let,s suppose Bohmian mechanics was true then we would have trajectories in the form:(adsbygoogle = window.adsbygoogle || []).push({});

[tex]m\frac{d^{2}x}{dt^2}=-\nabla(V+U_{b}) [/tex] (1) [tex]U_{b}=-\frac{\hbar^2}{2m}\nabla^{2}\psi [/tex] being psi the solution to schroedinguer equation...but the trajectories in (1) comes from the Hamiltonian..

[tex]H=H_0+U_b [/tex] with this we could form the new Schroedinguer equation with function [tex]\psi_{1}(x)[/tex],with new trajectories.....proceeding this infinite times we would have that the real trajectories..(after quantizying infinite times) are:

[tex]m\frac{d^{2}x}{dt^2}=-\nabla(V+U_{total}) [/tex]

with U total [tex]U_{total}=-\frac{\hbar^2}{2m}\nabla(\sum_{n=0}^{\infty}\psi_{n}(x)) [/tex]

**Physics Forums | Science Articles, Homework Help, Discussion**

Join Physics Forums Today!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

# Quantization over quantization

**Physics Forums | Science Articles, Homework Help, Discussion**