• Support PF! Buy your school textbooks, materials and every day products Here!

Quantum Harmonic Oscillator

  • Thread starter 6Stang7
  • Start date

Answers and Replies

  • #2
malawi_glenn
Science Advisor
Homework Helper
4,786
22
when you solve the shrödinger equation for that kind of potentail, the soloutins are eigenfunctions with eigenvalues (n+1/2)h_bar * omega

do you have a course book in QM ?

http://www.oru.se/oru-upload/Institutioner/Naturvetenskap/Dokument/Fysik/PJ/Kvantmekanik/stegop.pdf [Broken]
 
Last edited by a moderator:
  • #3
malawi_glenn
Science Advisor
Homework Helper
4,786
22
and yeah, the thing i post is an alternate way to solve it, by using ladder operators. But you can find the solutions for the differential equations needed for solving the Shrödinger equation for this potential in almost any basic QM book.
 
  • #5
212
0
Ahhhhh, now this make since.

I have a problem I am working on where there a 2N electrons (of mass m) that are free to move along the x-axis. The potential energy for each electron is U(x)=(1/2)kx^2, where k is a positive constant. I need to find the total enery of the system for a) integer angular momentum particls, and b) half-interger. (all magnetic and electric forces can be ignored.

so for a), the particles would act like bosons and not be restricted by the exclusion princple, i.e. they would all sit in the same quantum state. That would give a total energy of E=(2N)(1/2)k. (the x^2 can be dropped because all particles will be in the lowest and same state), giving E=Nk. omega=(k/m(r))^(1/2), and I can solve this in terms of k. However, would m(r), the reduced mass, be [2Nm(e)m(n)]/[(2Nm(e)+m(n))]? My thinking is that all electrons would be in one state and can be viewed as a single point mass of 2Nm(e). Can I do that?

As for part b with half-integer angular momentum, it would be just be E=(n+1/2)(h/2pi)w, which would become E=(n+1/2)(h/2pi)(k/m(r))^(1/2), correct?


However, this does make alot more sense now.
 
  • #6
malawi_glenn
Science Advisor
Homework Helper
4,786
22
Is a statistical mechanics problem? Were you want to calculate <E> ? Expactation value of energy (as usual in Quantum physics). And for that we get a geometric serie..

If this is the problem you want to do, there is good info in this:
http://www.oru.se/oru-upload/Institutioner/Naturvetenskap/Dokument/Fysik/PJ/Kursplaner/instud05.pdf [Broken]
 
Last edited by a moderator:
  • #7
212
0
this is it word for word:"there are 2N electrons (of mass m) that are free to move along the x-axis. The potential energy for each electron is U(x)=(1/2)kx^2, where k is a positive constant. I need to find the total enery of the system for a) integer angular momentum particls, and b) half-interger. (all magnetic and electric forces can be ignored."

I know that for part (b) i treat it like a quantum harmonic oscillator. However, I am unsure of what the reduced mass would be (although as I understand it electrons are still though of as point masses; therefore i can treate a group of 2N particles as a single mass of 2Nm(e).)
 
  • #8
malawi_glenn
Science Advisor
Homework Helper
4,786
22
I do not think I can help you any further =(

do you by "angular momentum" mean intristinc angular momentum, spin ?
 
  • #9
212
0
ya. one is to think of the electrons has having there normal 1/2 spin, and the other is to look at them as whole integers, i.e. think of the elctrons as bosons and then as fermions.
 
  • #10
malawi_glenn
Science Advisor
Homework Helper
4,786
22
Well for the bosons, you just add them up 2N times, all will be in the ground state. 2N(0+1/2)h_bar*omega.

For the fermions, you get this m_s quantum number (spin "up" or "down"), so there can only be two fermions for each n.

So you get this sum

E = 2 * sum{n= 0 to r}((n+1/2)*h_bar*omega)
were r is N/2 - 1

this should be right =)
 

Related Threads on Quantum Harmonic Oscillator

  • Last Post
Replies
3
Views
1K
  • Last Post
Replies
15
Views
907
  • Last Post
Replies
13
Views
2K
  • Last Post
Replies
8
Views
1K
  • Last Post
Replies
4
Views
1K
  • Last Post
Replies
0
Views
2K
  • Last Post
Replies
0
Views
2K
Replies
2
Views
4K
Replies
1
Views
936
Replies
3
Views
896
Top