(adsbygoogle = window.adsbygoogle || []).push({}); 1. The problem statement, all variables and given/known data

Have two Greenberger-Horne-Zeilinger (GHZ) states of qubits A, B, C and

D, E, F as follows:

[tex] \mid GHZ \rangle_{ABC} = \frac{1}{\sqrt{2}} \left( \mid 0 \rangle_{A}\mid 0 \rangle_{B}\mid 0 \rangle_{C} + \mid 1 \rangle_{A}\mid 1 \rangle_{B}\mid 1 \rangle_{C}\right)[/tex]

and

[tex] \mid GHZ \rangle_{DEF} = \frac{1}{\sqrt{2}} \left( \mid 0 \rangle_{D}\mid 0 \rangle_{E}\mid 0 \rangle_{F} + \mid 1 \rangle_{D}\mid 1 \rangle_{E}\mid 1 \rangle_{F}\right)[/tex]

If you perform a measurement in the Bell basis on the qubits A and D, and obtain

the outcome: [tex] \mid \Psi^{+} \rangle_{AD} = \frac{1}{\sqrt{2}} \left(\mid 0 \rangle_{A}\mid 1 \rangle_{D} + \mid 1 \rangle_{A}\mid 0 \rangle_{D}\right) [/tex]

Write down the state to which qubits B, C, D and F are projected?

Attempted Solution

Total state is : [tex] \mid GHZ \rangle_{ABCDEF}= \mid GHZ \rangle_{ABC} \mid GHZ \rangle_{DEF} [/tex]

Projector operator for measurement of A and D is [tex] \mid Bell \rangle \langle Bell \mid_{AD} [/tex]

so [tex] \mid Bell \rangle \langle Bell \mid_{AD} \mid GHZ \rangle_{ABCDEF} = \mid Bell \rangle_{AD} \mid \Psi^{+} \rangle_{AD} \mid \Psi^{+} \rangle_{BCEF} [/tex]; is this right?

Here I get confused. I think the method is simply:

[tex] \langle \Psi^{+} \mid_{AD}\mid GHZ \rangle_{ABCDEF} = \mid \Psi^{+} \rangle_{BCEF} [/tex]

But if so, why?

**Physics Forums | Science Articles, Homework Help, Discussion**

Join Physics Forums Today!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

# Homework Help: Quantum measurement projective?

**Physics Forums | Science Articles, Homework Help, Discussion**