Given [tex]S=\frac{1}{2}\hbar{\sigma} [/tex] where [tex]\sigma = \left(\left(\begin{array}{cc}0&1\\1&0\end{array}\right),\left(\begin{array}{cc}0&-i\\i&0\end{array}\right),\left(\begin{array}{cc}1&0\\0&-1\end{array}\right)\right) [/tex], show that(adsbygoogle = window.adsbygoogle || []).push({});

[tex] |+> = \left(\begin{array}{cc}1\\0\end{array}\right) [/tex] and [tex] |-> = \left(\begin{array}{cc}0\\1\end{array}\right) [/tex] are the eigenfunctions for [tex] S_z [/tex] . Obtain the matrix representation for [tex] S_y [/tex] and [tex] S_x [/tex] in the basis [tex] (|+>,|->)[/tex] .

**Physics Forums | Science Articles, Homework Help, Discussion**

Join Physics Forums Today!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

# Homework Help: Quantum Mechanics - question about spin

**Physics Forums | Science Articles, Homework Help, Discussion**