Quantum mechanics (1 Viewer)

Users Who Are Viewing This Thread (Users: 0, Guests: 1)

|a'> and |a"> are both eigenvectors of eigenvalue a' and a" of an Operator A
and a' doesn't equal a",The hameltonien of the system is defined as
H=ε( |a'><a"| + |a"><a'| )
a)What are the eigenvectors |E1> and |E2> of the energy?

b)If the system was in the state |a'> at t=0 , write the system state at t>0

c)What is the probability to find the system in the |a"> state at t>0 if it was in |a'> at t=0?

Frankly the teacher solved it , but i have no idea how he came up with the result in (3) and (4) (For (1)(2)(3)(4) check the pics attached)
I understand (1) and (2) and how we can obtien them,any help for (3) and (4)?


Last edited:


Science Advisor
Homework Helper
The first thing he did was to write H as a matrix in the basis |a'>, |a''>. You got that part, right?
[tex]H=\left( \begin{array}{cc}0 & \epsilon \\ \epsilon & 0\end{array}\right)[/tex]

Then (3) you simply find the eigenvectors of this matrix, which is an elementary linear algebra exercise.
Also, if you know the state at a certain time (say t=0) and you've written it out in the basis of energy eigenstates, the time dependence is really simple. Each term simply gets the familiar exponential factor.

The Physics Forums Way

We Value Quality
• Topics based on mainstream science
• Proper English grammar and spelling
We Value Civility
• Positive and compassionate attitudes
• Patience while debating
We Value Productivity
• Disciplined to remain on-topic
• Recognition of own weaknesses
• Solo and co-op problem solving