(adsbygoogle = window.adsbygoogle || []).push({}); 1. The problem statement, all variables and given/known data

Show that the quaternion division ring H has infinitely many u satisfying u[tex]^{2}[/tex]=-1

2. Relevant equations

Elements of H is of the form a.1 +bi+cj+dk where a, b, c, d in [tex]\textsl{R}[/tex] ( reals) and i[tex]^{2}[/tex]= j[tex]^{2}[/tex]= k[tex]^{2}[/tex]=ijk = -1.

3. The attempt at a solution

Let u = a.1 +bi+cj+dk then u[tex]^{2}[/tex]=a[tex]^{2}[/tex]-b[tex]^{2}[/tex]-c[tex]^{2}[/tex]-d[tex]^{2}[/tex]+2a(bi+cj+dk)+2bicj+2bidk+2cjdk and this = -1 provided a=0 and -b[tex]^{2}[/tex]-c[tex]^{2}[/tex]-d[tex]^{2}[/tex]=1 and 2bicj+2bidk+2cjdk= 0 but I do not see how 2bicj+2bidk+2cjdk= 0.

**Physics Forums - The Fusion of Science and Community**

# Quaternion ring

Know someone interested in this topic? Share a link to this question via email,
Google+,
Twitter, or
Facebook

- Similar discussions for: Quaternion ring

Loading...

**Physics Forums - The Fusion of Science and Community**