Question about an integral.

  • #1
zetafunction
391
0
given [x] the 'integer function' would be the following bound valid ??

[tex] \int_{0}^{\infty}dt [g(x/t)]f(t) \le \int_{0}^{\infty}dt g(x/t)f(t) [/tex]

for a given functions f(t) and g(u) u=x/t , here g is a non-decreasing positive function for positive arguments (and real) of parameter u=x/t
 

Answers and Replies

  • #2
vineethbs
8
0
Hi,

if f(t) >= 0 for t >=0, then using (g(x/t) + 1) would be a better idea ?
Now if
[tex] f(t) = f^{+}(t) - f^{-}(t) [/tex],
where [tex]f^{+}(t) and f^{-}(t)[/tex] denotes max(f(t),0) and max(-f(t),0) respectively
then one can use g(x/t) + 1 for f+(t) and g(x/t) - 1 for f-(t) to obtain a bound.
 

Suggested for: Question about an integral.

  • Last Post
Replies
8
Views
1K
  • Last Post
Replies
5
Views
390
  • Last Post
Replies
29
Views
417
  • Last Post
Replies
5
Views
941
  • Last Post
Replies
3
Views
565
  • Last Post
Replies
2
Views
459
  • Last Post
Replies
1
Views
412
  • Last Post
Replies
7
Views
510
  • Last Post
Replies
6
Views
483
  • Last Post
Replies
6
Views
421
Top