Question about an integral.

  • #1
391
0
given [x] the 'integer function' would be the following bound valid ??

[tex] \int_{0}^{\infty}dt [g(x/t)]f(t) \le \int_{0}^{\infty}dt g(x/t)f(t) [/tex]

for a given functions f(t) and g(u) u=x/t , here g is a non-decreasing positive function for positive arguments (and real) of parameter u=x/t
 

Answers and Replies

  • #2
8
0
Hi,

if f(t) >= 0 for t >=0, then using (g(x/t) + 1) would be a better idea ?
Now if
[tex] f(t) = f^{+}(t) - f^{-}(t) [/tex],
where [tex]f^{+}(t) and f^{-}(t)[/tex] denotes max(f(t),0) and max(-f(t),0) respectively
then one can use g(x/t) + 1 for f+(t) and g(x/t) - 1 for f-(t) to obtain a bound.
 

Related Threads on Question about an integral.

Replies
7
Views
731
  • Last Post
Replies
2
Views
1K
Replies
4
Views
2K
  • Last Post
Replies
2
Views
1K
Replies
5
Views
776
  • Last Post
Replies
7
Views
1K
  • Last Post
Replies
2
Views
4K
  • Last Post
Replies
2
Views
726
  • Last Post
Replies
3
Views
2K
Replies
2
Views
1K
Top