In the notes we had the following example of a problem, with solution:(adsbygoogle = window.adsbygoogle || []).push({});

Example. Shooting stars. If you watch the sky form a peak of "Kékes-tet˝o" (highest

peak in Hungary) around midnight in August, you will see shooting-stars. Assume

that the amount of time between two shooting-stars, which is a random quantity, is 10

minutes on the average. If we watch the sky for 15 minutes, then how much is the

probability that we see exactly 2 shooting-stars?

Remark. It is not difficult to figure out wrong arguments to get the wrong answers:

0.5 or 0.75. The reader will enjoy to find out these wrong arguments.

Solution. The number of shooting-stars visible during 15 minutes is a random variable.

The following facts are obvious:

1. the number of meteors in the space is vary large, and

2. for each meteor the probability that it causes a shooting-star during our 10 minute

is small, and

3. the meteors cause a shooting-stars independently of each other,

These facts guarantee that the number of shooting-stars visible during 15 minutes follows

a Poisson distribution. The parameter of this distribution is equal to the expected

value of the number of shooting-stars visible during 15 minutes. Since the amount of

time between two shooting-stars is 10 minutes in the average, the average number of

shooting-stars visible during 15 minutes is 1.5. Thus, = 1:5. This is why the answer

to the question is

P(We see exactly 2 shooting-stars) =

So my question is, why is the expected value of visible shooting stars predicted to be 1.5 in 15 minutes? I would think it's 2.5. Here is a diagram showing why:

0*--------10*---15---20*

the * indicate the shooting stars, and numbers is the time. So it shows that the time between two stars is 10 minutes. Also at 15 minutes, we observe at average 2.5 stars... So how am i wrong, since the solution says its 1.5 stars at average during 15 minutes?

**Physics Forums - The Fusion of Science and Community**

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

# Question about expected value

Loading...

Similar Threads - Question expected value | Date |
---|---|

I Expected Value Question | Feb 17, 2017 |

Probability question involving picking balls from a bag | Nov 30, 2014 |

Expected Value and Variance Question | Jan 20, 2013 |

Risk Probability Question W/ Expected Value and Standard Deviation | Nov 20, 2012 |

Simple question about expected value | May 3, 2010 |

**Physics Forums - The Fusion of Science and Community**