Question about Independent Random Variables and iid

chingkui

I have a question about independent random variable:
Let say we flip a fair coin, the set of outcome is S={H,T}, P(H)=1/2, P(T)=1/2. Define random variable X:S->R by X(H)=1, X(T)=-1.
From what I read in books, I can define X1 and X2 as independent identically distributed (iid) random variables with the same distribution as X. Then, that would mean P(X1=1,X2=1)=P(X1=1)P(X2=1).
It can easily be seen that the event {X1=1,X2=1}={w in S:X1(w)=1,X2(w)=1}={w in S:w=H}={w in S:X1(w)=1}={X1=1}={w in S:X2(w)=1}={X2=1}, and since P({w:w=H})=P(H)=1/2, we have P(X1=1,X2=1)=1/2 and P(X1=1)P(X2=1)=1/4.
So, I am not sure exactly what I mistake I made. Please help me clear up my confusion. Thanks.

Related Set Theory, Logic, Probability, Statistics News on Phys.org

mathman

The sample space (S) for two flips has four points (H,H), (H,T), (T,H), (T,T), each of which has probability 1/4. In abstract terms, the sample space for n independent random variables is the direct product of the sample spaces of each of the variables.

Physics Forums Values

We Value Quality
• Topics based on mainstream science
• Proper English grammar and spelling
We Value Civility
• Positive and compassionate attitudes
• Patience while debating
We Value Productivity
• Disciplined to remain on-topic
• Recognition of own weaknesses
• Solo and co-op problem solving