Dismiss Notice
Join Physics Forums Today!
The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

Question about interior.

  1. Sep 18, 2012 #1
    If I have the statement Cl(X-A)=X-Int(A)
    X and A are topological spaces. Does this statement work in infinite dimensions and uncountable dimensions. I think it would just wondering.
     
  2. jcsd
  3. Sep 18, 2012 #2

    micromass

    User Avatar
    Staff Emeritus
    Science Advisor
    Education Advisor
    2016 Award

    What do you mean with "dimension" in topology in the first place?

    But yes, the statement is always true as you can easily check for yourself.
     
  4. Sep 18, 2012 #3

    HallsofIvy

    User Avatar
    Staff Emeritus
    Science Advisor

    Most topological spaces do define "dimension". Nor does it make sense to talk about X and A both being topologica spaces. I think you mean X is a topological space and A is a subset of X. But it is true that in any topological space that the closure of X- A is X- the interior of A.
     
Know someone interested in this topic? Share this thread via Reddit, Google+, Twitter, or Facebook




Similar Discussions: Question about interior.
  1. Interior Product (Replies: 10)

  2. Question about subset (Replies: 2)

Loading...