The hamiltonian is [tex]H=\frac{1}{2}(\vec{p}+\frac{\vec{A}}{c})[/tex]. We investigate this problem at a polar coordinate [tex](r,\theta)[/tex]. The radial equation is(adsbygoogle = window.adsbygoogle || []).push({});

[tex][-\frac{1}{2}\frac{d^2}{dr^2}+\frac{1}{2}(m^2-\frac{1}{4})\frac{1}{r^2}+\frac{1}{2}\omega_{L}r^2]u(r)=[E-m\omega_{L}]u(r)[/tex]

in order to find the wavefunction, we must investigate the behavior at the infinity of the differential euqtion.my question is that why the approximate equation take this form at infinity.[tex]r\rightarrow\infty[/tex], the equation becomes

[tex][-\frac{1}{2}\frac{d^2}{dr^2}+\frac{1}{2}\omega_{L}r^2]u(r)=0[/tex].

by the way, the energy is [tex]E=\omega_L(2n+|m|+m+1)[/tex]. we can see that when [tex]r\rightarrow\infty[/tex], then [tex]n\rightarrow\infty[/tex], so the energy above becomes infinity. then we can't omit [tex][E-m\omega_{L}]u(r)[/tex] in the above approximate equation. In my opinion, the equation should be written in the follow formulation:

[tex][-\frac{1}{2}\frac{d^2}{dr^2}+\frac{1}{2}\omega_{L}r^2]u(r)=[E-m\omega_{L}]u(r)[/tex]

Is that right? What is the reason?

**Physics Forums | Science Articles, Homework Help, Discussion**

Join Physics Forums Today!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

# Question about Landau level

**Physics Forums | Science Articles, Homework Help, Discussion**