In critical phenomena, we can enlarge the block size(momenta fluctuation) by Kadanoff transformation, say(adsbygoogle = window.adsbygoogle || []).push({});

[tex]k \rightarrow bk (b<=1) [/tex], and scale the new Hamiltonian by [tex]k' = k/b, x'=bx[/tex] to recover to the original block size.

In QFT, similarly integrating out the high momenta produces the effective Langrangian,

[tex]\int_{k<=b\Lambda} [D\phi] exp(iS_{eff}) = \int_{b\Lambda <k < \Lambda} [D\phi] exp(iS)[/tex].

The parameters [tex]y[/tex] in the effective langrangian [tex]S_{eff}[/tex] should depend on [tex]b[/tex]. We can also do a scaling [tex]k' = k/b, x'=bx[/tex] in [tex]S_{eff}[/tex] to get [tex]S'_{eff}[/tex] whose path integral is now [tex]\int_{k' <= \Lambda}[/tex]. The parameters [tex]y'[/tex] also depend on [tex]b[/tex]. My puzzle is that which are the so-called beta fuctions, [tex]dy \over db[/tex] or [tex]dy' \over db[/tex]

**Physics Forums | Science Articles, Homework Help, Discussion**

Join Physics Forums Today!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

# Question about RG and scaling in qft

Can you offer guidance or do you also need help?

Draft saved
Draft deleted

**Physics Forums | Science Articles, Homework Help, Discussion**