given the Selberg trace formula(adsbygoogle = window.adsbygoogle || []).push({});

[tex] \sum_{n=0}^{\infty} h(r_n) = \frac{\mu(F)}{4 \pi } \int_{-\infty}^{\infty} r \, h(r) \tanh(\pi r) dr + \sum_{ \{T\} } \frac{ \log N(T_0) }{ N(T)^{1/2} - N(T)^{-1/2} } g \left ( \log N(T) \right ) [/tex]

then i have the question if [tex] \frac{ Z'}{Z}(1/2+is) = \sum_{ \{T\} } \frac{ \log N(T_0) }{ N(T)^{1/2} - N(T)^{-1/2} } exp(ilog(N (T_0) [/tex] is correct

with [tex] Z(s) [/tex] is the Selberg Zeta function.

**Physics Forums - The Fusion of Science and Community**

# Question about Selberg Zeta.

Know someone interested in this topic? Share a link to this question via email,
Google+,
Twitter, or
Facebook

Have something to add?

- Similar discussions for: Question about Selberg Zeta.

Loading...

**Physics Forums - The Fusion of Science and Community**