Question about Selberg Zeta.

  1. given the Selberg trace formula

    [tex] \sum_{n=0}^{\infty} h(r_n) = \frac{\mu(F)}{4 \pi } \int_{-\infty}^{\infty} r \, h(r) \tanh(\pi r) dr + \sum_{ \{T\} } \frac{ \log N(T_0) }{ N(T)^{1/2} - N(T)^{-1/2} } g \left ( \log N(T) \right ) [/tex]

    then i have the question if [tex] \frac{ Z'}{Z}(1/2+is) = \sum_{ \{T\} } \frac{ \log N(T_0) }{ N(T)^{1/2} - N(T)^{-1/2} } exp(ilog(N (T_0) [/tex] is correct

    with [tex] Z(s) [/tex] is the Selberg Zeta function.
     
  2. jcsd
Know someone interested in this topic? Share a link to this question via email, Google+, Twitter, or Facebook

Have something to add?

0
Draft saved Draft deleted