- #1
- 2
- 0
Member warned about posting with no template
I'm trying to solve this problem from a high school math competition:
Find all functions f : R → R such that, f(f(x+y)-f(x-y))=xy, for all real x,y.
Any ideas of how to approach it.
I have found that f(0)=0, if x=y f(f(2x))=x^2
Find all functions f : R → R such that, f(f(x+y)-f(x-y))=xy, for all real x,y.
Any ideas of how to approach it.
I have found that f(0)=0, if x=y f(f(2x))=x^2