- #1

- 46

- 0

## Main Question or Discussion Point

I've got a question. It pertains to a proof I'm doing. I ran into this stumbling block. If I could show this I think I could complete the proof.

G is a finite Abelian Group such that there exits more than one element of order 2 within the group.

more than one element of the form b not equal to identity

such that b^2=e

Is the product of all the elements of order 2 equal to the identity element, and why?

G is a finite Abelian Group such that there exits more than one element of order 2 within the group.

more than one element of the form b not equal to identity

such that b^2=e

Is the product of all the elements of order 2 equal to the identity element, and why?