(adsbygoogle = window.adsbygoogle || []).push({}); 1. The problem statement, all variables and given/known data

Suppose that f(x)>=0 in some deleted neighborhood of c, and that lim x->a f(x)=R. Prove that lim x->a sqrt{f(x)}=sqrt{R} under the assumption that R>0.

2. Relevant equations

if 0<|x-c|<delta, then |f(x)-L|<epsilon.

3. The attempt at a solution

I don't know how to start with this.

I tried to work on lsqrt{f(x)}-sqrt(L)l=lsqrt{f(x)}-sqrt(L)llsqrt{f(x)}+sqrt(L)l/lsqrt{f(x)}+sqrt(L)l

=lsqrt{f(x)}-sqrt(L)l/(sqrt{f(x)}+sqrt(L))

But I don't know how to go from here, I'm not sure if it's a correct start as well.

Any help would be appreciated. Thanks!

**Physics Forums | Science Articles, Homework Help, Discussion**

Join Physics Forums Today!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

# Homework Help: Question of proof of analysis

**Physics Forums | Science Articles, Homework Help, Discussion**