- #1
- 6
- 0
I don't really know how to approach this problem but let me give the question first...
A package is dropped from a plane which is flying with a constant horizontal velocity of V_a=150 ft/s. Determine the normal and tangential components of acceleration and the radius of curvature of the path of motion (a) at the moment the package is released at A, where it has a horizontal velocity of V_a=150 ft/s, and (b) just before it strikes the ground at B. They also give you the height of the plan relative to the ground to be 1500 ft.
I'm not entirely sure but wouldn't the tangential component of accelaration be 0 since it is just being released? And the normal component of acceleration is v^2/r however r is another thing you need to solve for in which I am not sure in how to solve.
A package is dropped from a plane which is flying with a constant horizontal velocity of V_a=150 ft/s. Determine the normal and tangential components of acceleration and the radius of curvature of the path of motion (a) at the moment the package is released at A, where it has a horizontal velocity of V_a=150 ft/s, and (b) just before it strikes the ground at B. They also give you the height of the plan relative to the ground to be 1500 ft.
I'm not entirely sure but wouldn't the tangential component of accelaration be 0 since it is just being released? And the normal component of acceleration is v^2/r however r is another thing you need to solve for in which I am not sure in how to solve.