Hey everyone,(adsbygoogle = window.adsbygoogle || []).push({});

I'm working through the first chapter of Mendelson's Topology right now and ran into this question:

Let P be a subset of real numbers R such that i) 1 is in P, 2) if a,b are in P then a+b are in P, and 3) for each x in R, either x is in P, x=0, or -x is in P. Define Q= {(a,b) such that (a,b) is in R x R and a-b is in P}. Prove that Q is transitive.

The only reason I'm unsure about this is because my proof was very short and didn't involve 2 of the properties. This is what i said:

To prove Q is transitive, we prove that if aRb and bRc then aRc. Suppose aRb and bRc, then by definition of Q a-b is in P and b-c is in P (and hence in Q). According to property 2 then, (a-b)+(b-c) is in P, or a-c is in P and hence Q, so Q is transitive.

See why I'm confused? Did I miss something?

Thanks for your help.

**Physics Forums | Science Articles, Homework Help, Discussion**

Join Physics Forums Today!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

# Question on Relations

**Physics Forums | Science Articles, Homework Help, Discussion**