We know that all states of the wavefunctions must be quantized. Therefore, when we have a particle, say an electron, trapped in a well with infinite potentials on either side - let's set the boundaries to the traditional -1/2L to 1/2L - the ground state of the energy must give us a wavelength which must be, at most, 1/2lambda=L. We then can have n number of 1/2lambdas within the well, and we can describe those states alternatingly with Cos and Sin functions - but n must be a whole integer - otherwise the state is not quantized. Now, suppose we inject a single electron, at a velocity of .01c, let's be more specific about it and say 1x10^6 m/s, into a well that is 4 Angstroms wide - i.e. from -1/2L to 1/2L, we have a space spanning 4 Angstroms. We know, from the DeBroglie relation that the wavelength of the electron at that speed is approximately 7 Angstroms. What happens when the electron enters that well? Will the energy state immediately adapt to a quantized level - and if so, will it immediately fall to ground state or will it adapt to the nearest frequency which allows whole numbers of half wavelengths in the 4 Angstrom well? Or does the whole system just break down?(adsbygoogle = window.adsbygoogle || []).push({});

Jason

**Physics Forums | Science Articles, Homework Help, Discussion**

Join Physics Forums Today!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

# Question regarding 1-D PIW thought problem

**Physics Forums | Science Articles, Homework Help, Discussion**