Hi there,(adsbygoogle = window.adsbygoogle || []).push({});

I'm giving lectures on SUSY following Weinberg III. Here's my problem: Is (27.1.12) correct? I mean, shouldn't the \Omega dependent factors be swapped? Otherwise \Phi^\dagger \Gamma is not gauge covariant!

My understanding is that the extended gauge transformations of (27.1.11) and (27.1.12) are generalizations of the ordinary ones in (27.1.2) and (27.1.4) respectively, i.e. one generalizes \Lambda(x_+) to \Omega(x_+,\theta_L), the point being that \Phi remains left-chiral after the \Omega transformation (and F and D terms are extended gauge invariant). But comparing (27.1.12) with (27.1.4) shows the \Omega factors of the transformation are the wrong way round.

Of course I can just correct this "typo" in my own lecture notes, but the problem is that I really need (27.1.12) to be true. Otherwise, jumping ahead to page 130 (hardback edition), I can't get (27.3.12) to be the gauge covariant left-chiral superfield it needs to be. I have now wasted 2 days going through literature and the web to sort this out, with no success!

So, why is (27.1.12) true / if it is a typo, how can I get (27.3.12) to be a left-chiral gauge covariant superfield?

Thank alot in advance for any help you can give.

**Physics Forums - The Fusion of Science and Community**

Join Physics Forums Today!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

# Question(s) on Weinberg III

Loading...

Similar Threads - Question Weinberg | Date |
---|---|

A Question about Wall crossing formula | Nov 18, 2017 |

B Questions about Quantum Gravity | Oct 7, 2017 |

A Interpretation of the Weinberg-Witten theorem | May 30, 2017 |

I Philosophy of Science and Symmetry Question | Jan 16, 2017 |

B Quantum gravity question | Oct 6, 2016 |

**Physics Forums - The Fusion of Science and Community**