# Questions on number theory

#### eljose

let be the Dirichlet series in the form:

$$g(s)=\sum_{n=0}^{\infty}a(n)n^{-s}$$ my question is if there is a relationship between g(1-s) and g(s) for any L-Dirichlet series.

another question...where could i find Vinogradov,s work on Goldbach conjecture?..thanks.

Related Linear and Abstract Algebra News on Phys.org

#### matt grime

Homework Helper
eljose said:
let be the Dirichlet series in the form:

$$g(s)=\sum_{n=0}^{\infty}a(n)n^{-s}$$ my question is if there is a relationship between g(1-s) and g(s) for any L-Dirichlet series.
of course there is, though it may not be nice adn interesting.

#### shmoe

Homework Helper
eljose said:
$$g(s)=\sum_{n=0}^{\infty}a(n)n^{-s}$$ my question is if there is a relationship between g(1-s) and g(s) for any L-Dirichlet series.
Not necessarily a nice one like the functional equations for Zeta or Dirichlet L-functions, and the question might not always even make sense. If the series for g(s) does not converge everywhere, g(1-s) won't make sense everywhere g(s) does, you have to consider if g can be extended to the entire plane.

You might want to look up what's usually called the Selberg class, it's an attempt to generalize the usual cast of L-functions.

eljose said:
another question...where could i find Vinogradov,s work on Goldbach conjecture?..thanks.
Have you tried searching MathSciNet?

### Physics Forums Values

We Value Quality
• Topics based on mainstream science
• Proper English grammar and spelling
We Value Civility
• Positive and compassionate attitudes
• Patience while debating
We Value Productivity
• Disciplined to remain on-topic
• Recognition of own weaknesses
• Solo and co-op problem solving