- #1

- 24

- 0

**1. integral(e^(2x)/[tex]\sqrt{}(e^2^x+1)[/tex])dx and integral(e^(x)/[tex]\sqrt{}(e^2^x+1)[/tex])dx**

**3. I tried solvign by letting u=e^x and used trig substitution for [tex]\sqrt{}u^2+1[/tex] where x=tan(theta), d(theta)=sec^2(theta), [tex]\sqrt{}u^2+1[/tex]=sec(theta) but got stuck**