Do you agree that, [tex] \forall k \in \left[ {a,b} \right]\;{\text{where}}\;\left( {a,b,k} \right) \in \mathbb{Q}^3 [/tex],(adsbygoogle = window.adsbygoogle || []).push({});

[tex] \exists \,\varepsilon > 0{\text{ such that}}\;\forall n \in \mathbb{N},\;\left( {\left\{ {k_1 ,k_2 , \ldots ,k_n } \right\} - a} \right) \subseteq \varepsilon \left\{ {0,1,2, \ldots ,\left\lfloor {\frac{{b - a}}{\varepsilon }} \right\rfloor } \right\} [/tex]

|*Is this True or False ?

**Physics Forums - The Fusion of Science and Community**

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

# Quick notation+statement verification

Loading...

Similar Threads - Quick notation+statement verification | Date |
---|---|

I Diagonalization and change of basis | Jan 16, 2018 |

I Definition of discrete Subgroup quick q | Jan 19, 2017 |

I Eistenstein series E_k(t=0) quick q? Modular forms | Dec 26, 2016 |

I Modular form quick question translation algebra | Dec 22, 2016 |

I Quick question about Lagrange's theorem | Sep 22, 2016 |

**Physics Forums - The Fusion of Science and Community**