- #1

- 668

- 68

## Homework Statement

Evaluate the following integral, given that C is the circular contour of radius greater than 2 centered at the origin.

[tex]I_a=\int_C\frac{z^2-1}{(2z-1)(z^2-4)^2}dz[/tex]

## The Attempt at a Solution

I has a simple pole at z=1/2 and two double poles, at z=2 and z=-2...all of which are enclosed by the contour C. By the residue theorem,

[tex]I_a=2 \pi i \left[ Res[f(1/2)]+Res[f(2)]+Res[f(-2)] \right] [/tex]

My problem is just that the answers I am getting for the residues are strange...

[tex]Res[f(1/2)]=\lim_{z \rightarrow 1/2} (2z-1) \frac{z^2-1}{(2z-1)(z^2-4)^2}=\lim_{z \rightarrow 1/2} \frac{z^2-1}{(z^2-4)^2}= \frac{-3/4}{225/16}=-\frac{12}{225} [/tex]

Is this answer correct? When I compute the residue for z=2 I get an even weirder answer (10/192) and these strange answers are making me question whether what I'm doing is correct (note that I used the multipole formula for z=2)