1. Not finding help here? Sign up for a free 30min tutor trial with Chegg Tutors
    Dismiss Notice
Dismiss Notice
Join Physics Forums Today!
The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

Quick Volume

  1. Nov 27, 2006 #1
    (Wow...it's been over three months since I posted anything...:eek:)
    Anyhow,

    Given continuous functions
    [tex]\begin{gathered}
    f_1 :\left[ {a,b} \right] \to \mathbb{R}^3 \hfill \\
    \vdots \hfill \\
    f_n :\left[ {a,b} \right] \to \mathbb{R}^3 \hfill \\
    \end{gathered} [/tex]
    for which
    [tex]\exists g:\left[ {a,b} \right] \to \mathbb{R}^3 {\text{ such that }}f_1 \cdot g = \cdots = f_n \cdot g[/tex]

    define [itex]\forall t \in \left[ {a,b} \right][/itex]
    [tex]R_t = \left\{ {\left( {x,y,z} \right)\left| {\left( {x,y,z} \right) \cdot g = f_1 \cdot g} \right.} \right\} \cap [/tex]
    [tex]\bigcup\limits_{\begin{subarray}{l}
    j < k < m \leqslant n, \\
    \left( {j,k,m} \right) \in \mathbb{N}^3
    \end{subarray}} {\left\{ {\left( {x,y,z} \right)\left| \begin{gathered}
    \left( {y - y_j } \right)\left( {x_j - x_k } \right)\left| {\begin{array}{*{20}c}
    {x_j - x_k } & {y_j - y_k } \\
    {x_j - x_m } & {y_j - y_m } \\

    \end{array} } \right| \leqslant \left( {x - x_j } \right)\left( {y_j - y_k } \right)\left| {\begin{array}{*{20}c}
    {x_j - x_k } & {y_j - y_k } \\
    {x_j - x_m } & {y_j - y_m } \\

    \end{array} } \right| \wedge \hfill \\
    \left( {y - y_j } \right)\left( {x_j - x_m } \right)\left| {\begin{array}{*{20}c}
    {x_j - x_m } & {y_j - y_m } \\
    {x_j - x_k } & {y_j - y_k } \\

    \end{array} } \right| \leqslant \left( {x - x_j } \right)\left( {y_j - y_m } \right)\left| {\begin{array}{*{20}c}
    {x_j - x_m } & {y_j - y_m } \\
    {x_j - x_k } & {y_j - y_k } \\

    \end{array} } \right| \wedge \hfill \\
    \left( {y - y_k } \right)\left( {x_k - x_m } \right)\left| {\begin{array}{*{20}c}
    {x_k - x_m } & {y_k - y_m } \\
    {x_k - x_j } & {y_k - y_j } \\

    \end{array} } \right| \leqslant \left( {x - x_k } \right)\left( {y_k - y_m } \right)\left| {\begin{array}{*{20}c}
    {x_k - x_m } & {y_k - y_m } \\
    {x_k - x_j } & {y_k - y_j } \\

    \end{array} } \right| \wedge \hfill \\
    \left( {z - z_j } \right)\left( {x_j - x_k } \right)\left| {\begin{array}{*{20}c}
    {x_j - x_k } & {z_j - z_k } \\
    {x_j - x_m } & {z_j - z_m } \\

    \end{array} } \right| \leqslant \left( {x - x_j } \right)\left( {z_j - z_k } \right)\left| {\begin{array}{*{20}c}
    {x_j - x_k } & {z_j - z_k } \\
    {x_j - x_m } & {z_j - z_m } \\

    \end{array} } \right| \wedge \hfill \\
    \left( {z - z_j } \right)\left( {x_j - x_m } \right)\left| {\begin{array}{*{20}c}
    {x_j - x_m } & {z_j - z_m } \\
    {x_j - x_k } & {z_j - z_k } \\

    \end{array} } \right| \leqslant \left( {x - x_j } \right)\left( {z_j - z_m } \right)\left| {\begin{array}{*{20}c}
    {x_j - x_m } & {z_j - z_m } \\
    {x_j - x_k } & {z_j - z_k } \\

    \end{array} } \right| \wedge \hfill \\
    \left( {z - z_k } \right)\left( {x_k - x_m } \right)\left| {\begin{array}{*{20}c}
    {x_k - x_m } & {z_k - z_m } \\
    {x_k - x_j } & {z_k - z_j } \\

    \end{array} } \right| \leqslant \left( {x - x_k } \right)\left( {z_k - z_m } \right)\left| {\begin{array}{*{20}c}
    {x_k - x_m } & {z_k - z_m } \\
    {x_k - x_j } & {z_k - z_j } \\

    \end{array} } \right| \wedge \hfill \\
    \left( {z - z_j } \right)\left( {y_j - y_k } \right)\left| {\begin{array}{*{20}c}
    {y_j - y_k } & {z_j - z_k } \\
    {y_j - y_m } & {z_j - z_m } \\

    \end{array} } \right| \leqslant \left( {y - y_j } \right)\left( {z_j - z_k } \right)\left| {\begin{array}{*{20}c}
    {x_j - x_k } & {z_j - z_k } \\
    {x_j - x_m } & {z_j - z_m } \\

    \end{array} } \right| \wedge \hfill \\
    \left( {z - z_j } \right)\left( {y_j - y_m } \right)\left| {\begin{array}{*{20}c}
    {y_j - y_m } & {z_j - z_m } \\
    {y_j - y_k } & {z_j - z_k } \\

    \end{array} } \right| \leqslant \left( {y - y_j } \right)\left( {z_j - z_m } \right)\left| {\begin{array}{*{20}c}
    {x_j - x_m } & {z_j - z_m } \\
    {x_j - x_k } & {z_j - z_k } \\

    \end{array} } \right| \wedge \hfill \\
    \left( {z - z_k } \right)\left( {y_k - y_m } \right)\left| {\begin{array}{*{20}c}
    {y_k - y_m } & {z_k - z_m } \\
    {y_k - y_j } & {z_k - z_j } \\

    \end{array} } \right| \leqslant \left( {y - y_k } \right)\left( {z_k - z_m } \right)\left| {\begin{array}{*{20}c}
    {y_k - y_m } & {z_k - z_m } \\
    {y_k - y_j } & {z_k - z_j } \\

    \end{array} } \right| \hfill \\
    \end{gathered} \right.} \right\}} [/tex]
    where [tex]\forall i > 0,\;\left( {x_i ,y_i ,z_i } \right) = f_i \left( t \right) [/tex]

    Find the net volume traversed by Rt from [itex]t=a[/itex] to [itex]t=b[/itex] if
    [tex] \exists p,q \in \left( {a,b} \right):\left( {R_p - \partial R_p } \right) \cap \left( {R_q - \partial R_q } \right) \ne \emptyset \, \wedge \, p \ne q [/tex]

    --------------------------------------------------------------------------------------------------------
    *Edit: it may be simpler to describe Rt in words: Rt is the "union of all closed triangular regions defined by vertices fj,fk,fm for all combinations of j,k,m at any [itex]t \in \left[ {a,b} \right] [/itex]."
     
    Last edited: Nov 27, 2006
  2. jcsd
  3. Dec 25, 2006 #2
    Anybody? :redface:

    Well, let's take the simplest case (n=3), where we have three continuous functions
    [tex]\begin{gathered}
    f_1 :\left[ {a,b} \right] \to \mathbb{R}^3 \hfill \\
    f_2 :\left[ {a,b} \right] \to \mathbb{R}^3 \hfill \\
    f_3 :\left[ {a,b} \right] \to \mathbb{R}^3 \hfill \\
    \end{gathered} [/tex]
    and
    [tex]\forall t \in \left[ {a,b} \right] [/tex], let [tex]R_t[/tex] be the open triangular region with vertices f1(t), f2(t), and f3(t).

    To simplify matters, assume that [itex]\forall p,q \in \left( {a,b} \right),\;\left( {R_p \cap R_q \ne \emptyset } \right) \to \left( {p = q} \right)[/itex].
    Find the net volume traversed by [tex]R_t[/tex] from t=a to t=b :smile:
    ----------------------------------------------------------------------------------
    Initially, one might guess the net volume to simply the sum of the areas of Rt:
    [tex]V_{net} = \frac{1}{2}\int\limits_a^b {\left\| {\left( {f_1 \left( t \right) - f_2 \left( t \right) } \right) \times \left( {f_1 \left( t \right) - f_3 \left( t \right) } \right)} \right\|dt} [/tex]
    But, that is false!
    Consider
    [tex]\begin{gathered}
    f_1 \left( t \right) = \left( {t,0,0} \right) \hfill \\
    f_2 \left( t \right) = \left( {0,t,0} \right) \hfill \\
    f_3 \left( t \right) = \left( {0,0,t} \right) \hfill \\
    \end{gathered} [/tex]
    for
    [tex]0 \leqslant t \leqslant 1 [/tex]

    The region traversed by Rt is the tetrahedron with vertices (0,0,0), (1,0,0), (0,1,0), (0,0,1).
    Its volume is simply
    [tex]\int\limits_0^1 {\int\limits_0^{1 - x} {\left( {1 - x - y} \right)dy} dx} = \frac{1}{6} [/tex]
    However,
    [tex]\frac{1}{2}\int\limits_0^1 {\left\| {\left( {f_1 \left( t \right) - f_2 \left( t \right)} \right) \times \left( {f_1 \left( t \right) - f_3 \left( t \right)} \right)} \right\|dt} = \frac{{\sqrt 3 }}{6} \ne \frac{1}{6}[/tex]
    -----------------------------------------------------------------------------------
    So, given three continuous functions
    [tex]\begin{gathered}
    f_1 :\left[ {a,b} \right] \subset \mathbb{R} \to \mathbb{R}^3 \hfill \\
    f_2 :\left[ {a,b} \right] \subset \mathbb{R} \to \mathbb{R}^3 \hfill \\
    f_3 :\left[ {a,b} \right] \subset \mathbb{R} \to \mathbb{R}^3 \hfill \\
    \end{gathered} [/tex]

    How can I calculate the net volume traversed by Rt?
    (That is, is there a general formula by which one can calculate this volume?)
     
    Last edited: Dec 25, 2006
Know someone interested in this topic? Share this thread via Reddit, Google+, Twitter, or Facebook

Have something to add?



Similar Discussions: Quick Volume
  1. Quick Q (Replies: 5)

  2. Quick question (Replies: 2)

  3. Quick Question (Replies: 4)

Loading...