- #1
Happiness
- 690
- 31
The Legendre functions are the solutions to the Legendre differential equation. They are given as a power series by the recursive formula (link [1] given below):
##\begin{align}y(x)=\sum_{n=0}^\infty a_n x^n\end{align}##
##\begin{align}a_{n+2}=-\frac{(l+n+1)(l-n)}{(n+1)(n+2)}a_n\end{align}##
If ##l## is a non-negative integer, The Legendre functions reduce to the Legendre polynomials. Otherwise, they are divergent (for ##x\in[-1,1]##).
However, I did Raabe's test and found that they are convergent for all values of ##l##, a wrong result.
My workings:
##\begin{align}y(1)&=\sum_{n=0}^\infty a_n\,1^n\\
&=\sum_{n=0,2,4...}^\infty a_n+\sum_{n=1,3,5...}^\infty a_n\end{align}##
Let ##\,y_1=\sum_{n=0,2,4...}^\infty a_n\,\,\,\,\,\,\,\,## and ##\,\,\,\,\,\,\,\,y_2=\sum_{n=1,3,5...}^\infty a_n##
Applying Raabe's test to ##\,y_1## (note that the ##\,a_{n+2}## term in (2) becomes the ##\,a_{n+1}## term in ##y_1##),
##\begin{align}R&=\displaystyle\lim_{n\rightarrow +\infty}n\big(\big|{\frac{a_n}{a_{n+1}}}\big|-1\big)\\
&=\displaystyle\lim_{n\rightarrow +\infty}n\big[\frac{(n+1)(n+2)}{(l+n+1)(n-l)}-1\big]\\
&=\frac{2n^2+\big(l(l+1)+2\big)n}{n^2+n-l(l+1)}\\
&=2\end{align}##
##R>1##. Thus, ##\,y_1## is absolutely convergent.
Since both ##\,y_1## and ##\,y_2## follows the same recursive formula (2), ##\,y_2## is also absolutely convergent. So ##\,y(1)## is absolutely convergent. Since ##\,y(1)## is absolutely convergent, ##\,y(-1)## is convergent.
But ##\,y(1)## or ##\,y(-1)## must diverge. Where's my mistake?
Background information:
http://mathworld.wolfram.com/LegendreDifferentialEquation.html
http://en.wikipedia.org/wiki/Ratio_test
##\begin{align}y(x)=\sum_{n=0}^\infty a_n x^n\end{align}##
##\begin{align}a_{n+2}=-\frac{(l+n+1)(l-n)}{(n+1)(n+2)}a_n\end{align}##
If ##l## is a non-negative integer, The Legendre functions reduce to the Legendre polynomials. Otherwise, they are divergent (for ##x\in[-1,1]##).
However, I did Raabe's test and found that they are convergent for all values of ##l##, a wrong result.
My workings:
##\begin{align}y(1)&=\sum_{n=0}^\infty a_n\,1^n\\
&=\sum_{n=0,2,4...}^\infty a_n+\sum_{n=1,3,5...}^\infty a_n\end{align}##
Let ##\,y_1=\sum_{n=0,2,4...}^\infty a_n\,\,\,\,\,\,\,\,## and ##\,\,\,\,\,\,\,\,y_2=\sum_{n=1,3,5...}^\infty a_n##
Applying Raabe's test to ##\,y_1## (note that the ##\,a_{n+2}## term in (2) becomes the ##\,a_{n+1}## term in ##y_1##),
##\begin{align}R&=\displaystyle\lim_{n\rightarrow +\infty}n\big(\big|{\frac{a_n}{a_{n+1}}}\big|-1\big)\\
&=\displaystyle\lim_{n\rightarrow +\infty}n\big[\frac{(n+1)(n+2)}{(l+n+1)(n-l)}-1\big]\\
&=\frac{2n^2+\big(l(l+1)+2\big)n}{n^2+n-l(l+1)}\\
&=2\end{align}##
##R>1##. Thus, ##\,y_1## is absolutely convergent.
Since both ##\,y_1## and ##\,y_2## follows the same recursive formula (2), ##\,y_2## is also absolutely convergent. So ##\,y(1)## is absolutely convergent. Since ##\,y(1)## is absolutely convergent, ##\,y(-1)## is convergent.
But ##\,y(1)## or ##\,y(-1)## must diverge. Where's my mistake?
Background information:
http://mathworld.wolfram.com/LegendreDifferentialEquation.html
http://en.wikipedia.org/wiki/Ratio_test