- #1
- 2
- 0
Hi please could you assist me: questions posted below:
Assuming the function f is holomorphic in the disk [itex]\[D(0,1) = \{ z \in \mathbb{C}:|z| < 1\}\][/itex], prove that [itex]\[g(z) = \overline {f(\overline z )} \][/itex] is also holomorphic in D(0,1) and find its derivative?
Find the radii of convergence of the following series stating which result is being used.
(a) [itex]\[\sum\limits_{k = 0}^\infty {k^{113} 2^{ - k} (z - 1)^k }
\][/itex]
(b)[itex]\[\sum\limits_{n = 2}^\infty {n!(z - e)^{3n} }
\][/itex]
(c)[itex]\[\sum\limits_{k = 0}^\infty {\frac{{z^k }}{{(k!)^2 }}}\]
[/itex]
(A)
Using Ratio Test:
[itex]\[\mathop {\lim }\limits_{k \to \infty } \left| {\frac{{a_{k + 1} }}
{{a_k }}} \right| = \mathop {\lim }\limits_{k \to \infty } \left| {\frac{{(k + 1)^{113} 2^{ - (k + 1)} (z - 1)^{k + 1} }}{{k^{113} 2^{ - k} (z - 1)^k }}} \right| = \mathop {\lim }\limits_{k \to \infty } \left| {\frac{{(k + 1)^{113} 2^{ - k - 1} (z - 1)^{k + 1} }}{{k^{113} 2^{ - k} (z - 1)^k }}} \right| = \mathop {\lim }\limits_{k \to \infty } \left| {\frac{{(k + 1)^{113} 2^{ - 1} (z - 1)}}{{k^{113} }}} \right|\][/itex]
=[itex]\[ \frac{{(\infty + 1)^{113} 2^{ - 1} (z - 1)}}{{\infty ^{113} }} = \frac{{(z - 1)}}
{2} < 1
\][/itex]
So is rad. of convergence (z-1)/2 and converging since it is less than 1??
(B)
Using Ratio Test:
[itex]\[\mathop {\lim }\limits_{n \to \infty } \left| {\frac{{a_{n + 1} }}
{{a_n }}} \right| = \mathop {\lim }\limits_{n \to \infty } \left| {\frac{{(n + 1)!(z - e)^{3(n + 1)} }}{{n!(z - e)^{3n} }}} \right| = \mathop {\lim }\limits_{n \to \infty } \left| {(n + 1)(z - e)^3 } \right| \][/itex]
[itex]= (\infty + 1)(z - e)^3 = \infty[/itex]
Hence, is ROC infinity and diverging since it is greater than 1?
(C)
Using Ratio Test:
[itex]\[\mathop {\lim }\limits_{k \to \infty } \left| {\frac{{a_{k + 1} }}
{{a_k }}} \right| = \mathop {\lim }\limits_{k \to \infty } \left| {\frac{{z^{k + 1} }}{{((k + 1)!)^2 }} \times \frac{{(k!)^2 }}
{{z^k }}} \right| = \mathop {\lim }\limits_{k \to \infty } \left| {\frac{{z^{k + 1} }}{{z^k }} \times \frac{{(k!)^2 }}
{{((k + 1)!)^2 }}} \right|\][/itex]
[itex]\[= \mathop {\lim }\limits_{k \to \infty } \left| {z \times \frac{{(k!)^2 }}{{((k + 1)!)^2 }}} \right| = \mathop {\lim }\limits_{k \to \infty } \left| {\sqrt z \frac{{k!}}{{k + 1!}}} \right|\][/itex]
[itex]\[ = \mathop {\lim }\limits_{k \to \infty } \left| {\frac{{\sqrt z }}
{{k + 1}}} \right| = \frac{{\sqrt z }}{{\infty + 1}} = 0\][/itex]
So is ROC 0 and converging since it is less than 1?
Assuming the function f is holomorphic in the disk [itex]\[D(0,1) = \{ z \in \mathbb{C}:|z| < 1\}\][/itex], prove that [itex]\[g(z) = \overline {f(\overline z )} \][/itex] is also holomorphic in D(0,1) and find its derivative?
Find the radii of convergence of the following series stating which result is being used.
(a) [itex]\[\sum\limits_{k = 0}^\infty {k^{113} 2^{ - k} (z - 1)^k }
\][/itex]
(b)[itex]\[\sum\limits_{n = 2}^\infty {n!(z - e)^{3n} }
\][/itex]
(c)[itex]\[\sum\limits_{k = 0}^\infty {\frac{{z^k }}{{(k!)^2 }}}\]
[/itex]
(A)
Using Ratio Test:
[itex]\[\mathop {\lim }\limits_{k \to \infty } \left| {\frac{{a_{k + 1} }}
{{a_k }}} \right| = \mathop {\lim }\limits_{k \to \infty } \left| {\frac{{(k + 1)^{113} 2^{ - (k + 1)} (z - 1)^{k + 1} }}{{k^{113} 2^{ - k} (z - 1)^k }}} \right| = \mathop {\lim }\limits_{k \to \infty } \left| {\frac{{(k + 1)^{113} 2^{ - k - 1} (z - 1)^{k + 1} }}{{k^{113} 2^{ - k} (z - 1)^k }}} \right| = \mathop {\lim }\limits_{k \to \infty } \left| {\frac{{(k + 1)^{113} 2^{ - 1} (z - 1)}}{{k^{113} }}} \right|\][/itex]
=[itex]\[ \frac{{(\infty + 1)^{113} 2^{ - 1} (z - 1)}}{{\infty ^{113} }} = \frac{{(z - 1)}}
{2} < 1
\][/itex]
So is rad. of convergence (z-1)/2 and converging since it is less than 1??
(B)
Using Ratio Test:
[itex]\[\mathop {\lim }\limits_{n \to \infty } \left| {\frac{{a_{n + 1} }}
{{a_n }}} \right| = \mathop {\lim }\limits_{n \to \infty } \left| {\frac{{(n + 1)!(z - e)^{3(n + 1)} }}{{n!(z - e)^{3n} }}} \right| = \mathop {\lim }\limits_{n \to \infty } \left| {(n + 1)(z - e)^3 } \right| \][/itex]
[itex]= (\infty + 1)(z - e)^3 = \infty[/itex]
Hence, is ROC infinity and diverging since it is greater than 1?
(C)
Using Ratio Test:
[itex]\[\mathop {\lim }\limits_{k \to \infty } \left| {\frac{{a_{k + 1} }}
{{a_k }}} \right| = \mathop {\lim }\limits_{k \to \infty } \left| {\frac{{z^{k + 1} }}{{((k + 1)!)^2 }} \times \frac{{(k!)^2 }}
{{z^k }}} \right| = \mathop {\lim }\limits_{k \to \infty } \left| {\frac{{z^{k + 1} }}{{z^k }} \times \frac{{(k!)^2 }}
{{((k + 1)!)^2 }}} \right|\][/itex]
[itex]\[= \mathop {\lim }\limits_{k \to \infty } \left| {z \times \frac{{(k!)^2 }}{{((k + 1)!)^2 }}} \right| = \mathop {\lim }\limits_{k \to \infty } \left| {\sqrt z \frac{{k!}}{{k + 1!}}} \right|\][/itex]
[itex]\[ = \mathop {\lim }\limits_{k \to \infty } \left| {\frac{{\sqrt z }}
{{k + 1}}} \right| = \frac{{\sqrt z }}{{\infty + 1}} = 0\][/itex]
So is ROC 0 and converging since it is less than 1?