Radius of convergence

  • Thread starter fauboca
  • Start date
  • #1
158
0
[tex]\sum_{n=2}^{\infty}z^n\log^2(n), \ \text{where} \ z\in\mathbb{C}[/tex]

[tex]\sum_{n=2}^{\infty}z^n\log^2(n) = \sum_{n=0}^{\infty}z^{n+2}\log^2(n+2)[/tex]

By the ratio test,

[tex]\lim_{n\to\infty}\left|\frac{z^{n+3}\log^2(n+3)}{z^{n+2}\log^2(n+2)}\right|[/tex]

[tex]\lim_{n\to\infty}\left|z\left(\frac{\log(n+3)}{ \log (n+2)}\right)^2\right| = |z|[/tex]

if [itex]|z|<1[/itex], then the sum converges, and if [itex]|z|>1[/itex], then the sum diverges.

Does this mean that [itex]R=1[/itex]?
 
Last edited:

Answers and Replies

  • #2
LCKurtz
Science Advisor
Homework Helper
Insights Author
Gold Member
9,555
766
Yes, and there was no need to shift the indices.
 
  • #3
158
0
Yes, and there was no need to shift the indices.
Thanks.
 

Related Threads on Radius of convergence

  • Last Post
Replies
3
Views
715
  • Last Post
Replies
4
Views
2K
  • Last Post
Replies
7
Views
2K
  • Last Post
Replies
2
Views
1K
  • Last Post
Replies
5
Views
2K
  • Last Post
Replies
4
Views
622
  • Last Post
Replies
4
Views
1K
  • Last Post
Replies
6
Views
1K
  • Last Post
Replies
5
Views
2K
  • Last Post
Replies
2
Views
1K
Top