A friend and I had an interesting thought and would like to know if it has any consequences.(adsbygoogle = window.adsbygoogle || []).push({});

It is a well known fact that a time-varying electric field is non-conservative, it has a time-dependent Hamiltonian, blah, blah, blah, blah. I'll give this a standard treatment to set up the punchline,

Suppose you have some charged particle in this field, you traverse a closed loop and your net work is nonzero.

[itex]\oint_{\partial S}\mathbf{E}\cdot d\mathbf{l}\neq0[/itex].

However, while energy is NOT conserved, we have Maxwell's equations telling us that

[itex]\mathbf{E}=-\nabla\phi-\partial_{0}\mathbf{A}[/itex].

Now, if we define an analogous gradient operator in Minkowski space; I think this is just a covariant derivative with the Minkowski metric, then Stoke's theorem applied to a closed path readily shows that the time-varying electric field IS conservative (mathematically speaking) in Minkowski space. The closed loop integral should be zero because if we integrate with this metric, the gradient we have defined appears on the RHS of Maxwell's equation above. Mind you, you must consider the electric field as being the gradient of the four-potential.

Regardless, energy cannot be conserved. But something, fictitious or not, IS conserved. Does anyone know of any consequences of this?

If I recall, E=mc^2 is merely a consequence of Lorentz invariance. Would one expect to get this out of this song and dance? I think this would make for an interesting problem, and I cannot think of a way to work it out.

1. The problem statement, all variables and given/known data

2. Relevant equations

3. The attempt at a solution

**Physics Forums | Science Articles, Homework Help, Discussion**

Dismiss Notice

Join Physics Forums Today!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

# Random relativity question.

**Physics Forums | Science Articles, Homework Help, Discussion**