Do you ever think up theorums and think: "that's inetersting, I wonder if anyone's ever thought of that before?"(adsbygoogle = window.adsbygoogle || []).push({});

In this vein the other day, I thougt up these two. They are both fairly trivial and possibly it's only me that finds them worth even bothering with, but what I want to know is if any of them have ever been applied to any area of maths?

Theorum 1: The set of all functions V from a set A to a field of scalars K form a vector space over K where for any such functions f, g and h: f + g = h , where f(x) + g(x) = h(x) and for a scalar a: a.f = g, where f(a*x) = g(x).

The main reason this seems interesting to me is that the axioms governing the behaviour of +:VxV-->V and .:KxV--> V are automatically implied in their defintion, dim(V) is simply |A|, plus all isomorphism classes of vector spaces can be described by such objects.

Theorum 2: Any group (G,*) forms a subsemigroup of a semigroup (that is not a group) (G+{0},*) where for any g in G: 0*g = g*0 = 0.

The reason I find this interesting is that the muplicative semigroup in a divison algebra is such a semigroup (i.e. a group plus a '0 element'). Also when a group has some sort of toplogical structure you can add such an element and define a new topology, e.g. in the group (R,+) you can add such an elemnt in a natural way to go from an open set to one thta is neither open nor closed.

**Physics Forums | Science Articles, Homework Help, Discussion**

Dismiss Notice

Join Physics Forums Today!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

# Random thoughts

**Physics Forums | Science Articles, Homework Help, Discussion**