I have a problem concerning a one-dimensional random walk in potentials. Assume a one-dimensional space [0,1] and a probability distribution p(x). At every point x we have a probability p(x) to go left and 1-p(x) to go right. Assume some smooth distribution of p(x) with boundaries p(0) = 0 and p(1) = 1. Now begin a random walk at x=0.5 with some step-size dx (e.g. d = 0.01) and capture the position of the walker at every time-step t. The boundary constraint assures that the walker remains inside [0,1].(adsbygoogle = window.adsbygoogle || []).push({});

I would assume that after sufficient time steps I get a steady distribution of the position of the walker. This would be equivalent to the probability distribution of finding the walker at some point in the potential.

However, I have yet no idea how to calculate this distribution from some given p(x). I tried to set up a differential equation using the fact that in the steady case the flow from point x to x + dx and back must be zero. However, I would get a pole at x = 0.5 which is pretty useless. I can post the calculation if someone is interested.

I would be glad for every hint how one could solve this problem. Thanks in advance!

Blue2script

**Physics Forums | Science Articles, Homework Help, Discussion**

Join Physics Forums Today!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

# Random walk in potential

**Physics Forums | Science Articles, Homework Help, Discussion**