Range of mappings proof

In summary, the given statements a), b), and c) are equivalent, where a) states that a given function f is 1-1, b) states that the image of the intersection of two sets is equal to the intersection of the images of the two sets under f, and c) states that the inverse image of the image of a set is equal to the set itself, for all subsets of S. The proofs for a) ⇒ b) and a) ⇒ c) have been shown, and the remaining equivalences can be proven by assuming the contrapositive and using the given definitions and properties.
  • #1
334
47

Homework Statement


Let ##f:S\to T## be a given function. Show the following statements are equivalent:
a) ##f## is 1-1
b) ##f(A\cap B) = f(A) \cap f(B),\; \forall A,B \in S##
c) ##f^{-1}(f(A)) = A,\; \forall A \subseteq S.##

Homework Equations


Definition:
##f## is 1-1 of ##A## into ##B## provided that ##f(x_1) \ne f(x_2)## whenever ##x_1 \ne x_2, \; \; \; x_1,x_2 \in A##.

Definitions:
Let ##f## is a mapping ##f:A \to B##:
If ##E \subseteq A## then ##f(E)## is the set of all elements ##f(x)## with ##x \in E##.
If ##E \subseteq B## then ##f^{-1}(E)## denotes the set of all ##x\in A## such that ##f(x) \in E##.

The Attempt at a Solution


I think I'm able to prove a) ##\Longrightarrow## b) and a) ##\Longrightarrow## c) but I can't complete the rest.
Lets first prove the general statement ##A \subseteq f^{-1}(f(A))## :
Take ##\alpha \in A## then ##f(\alpha) \in f(A)## and hence ##\alpha \in f^{-1}(f(A))##.

We can also prove that ##f(A \cap B) \subseteq f(A) \cap f(B)##:
Take ##\alpha \in f(A \cap B)## that means ##\alpha = f(z)## for some ##z\in A \cap B## and hence ##\alpha \in f(A)\cap f(B)##.

It's left to prove the equivalence between
a) ##f## is 1-1
b) ## f(A) \cap f(B) \subseteq f(A\cap B),\; \forall A,B \in S##
c) ##f^{-1}(f(A)) \subseteq A,\; \forall A \subseteq S.##
a) ##\Longrightarrow## b)
Take ##\alpha \in f(A) \cap f(B)## then ##\alpha = f(z_1), \; z_1 \in A## and ##\alpha = f(z_2), \; z_2 \in B##. But since ##f## is 1-1 ##z_1 = z_2## hence ##\alpha \in f(A \cap B)## and ## f(A) \cap f(B) \subseteq f(A\cap B)##.

a) ##\Longrightarrow## c)
Take ##\alpha \in f^{-1}(f(A))## that is ##z = f(\alpha)## for some ##z\in B##. That is
##f(\alpha) \in f(A)## hence ##f(\beta) = z## for some ##\beta \in A## but since ##f## is 1-1 this means ##\alpha = \beta## and ##\beta \in A## so ##f^{-1}(f(A)) \subseteq A##.

To complete the proof I need to either show that c) ##\Longrightarrow## a) and b) ##\Longrightarrow## c) OR show that c) ##\Longrightarrow## a) and b) ##\Longrightarrow## a).

c) ##\Longrightarrow## a)
It's equivalent to show the contrapositive that ##f(x_1) = f(x_2) \Longrightarrow x_1 = x_2##. Take ##x_1, x_ 2 \in A## so that ##f(x_1)= f(x_2)## then by c) ##x_1,x_2 \in f^{-1}(f(A))##. This means that ##z_1 = f(x_1)## and ##z_2 = f(z_2)## for ##z_1,z_2 \in B## but from the premise ##z_1 = z_2##.

I don't seem to get anywhere with the last part nor any luck with any of the other equivalences. Any hints on how to go about it? I'm also wondering If what I've done so far is correct?
 
Physics news on Phys.org
  • #2
Incand said:

Homework Statement


Let ##f:S\to T## be a given function. Show the following statements are equivalent:
a) ##f## is 1-1
b) ##f(A\cap B) = f(A) \cap f(B),\; \forall A,B \in S##
c) ##f^{-1}(f(A)) = A,\; \forall A \subseteq S.##

Homework Equations


Definition:
##f## is 1-1 of ##A## into ##B## provided that ##f(x_1) \ne f(x_2)## whenever ##x_1 \ne x_2, \; \; \; x_1,x_2 \in A##.

Definitions:
Let ##f## is a mapping ##f:A \to B##:
If ##E \subseteq A## then ##f(E)## is the set of all elements ##f(x)## with ##x \in E##.
If ##E \subseteq B## then ##f^{-1}(E)## denotes the set of all ##x\in A## such that ##f(x) \in E##.

The Attempt at a Solution


I think I'm able to prove a) ##\Longrightarrow## b) and a) ##\Longrightarrow## c) but I can't complete the rest.
Lets first prove the general statement ##A \subseteq f^{-1}(f(A))## :
Take ##\alpha \in A## then ##f(\alpha) \in f(A)## and hence ##\alpha \in f^{-1}(f(A))##.

We can also prove that ##f(A \cap B) \subseteq f(A) \cap f(B)##:
Take ##\alpha \in f(A \cap B)## that means ##\alpha = f(z)## for some ##z\in A \cap B## and hence ##\alpha \in f(A)\cap f(B)##.

It's left to prove the equivalence between
a) ##f## is 1-1
b) ## f(A) \cap f(B) \subseteq f(A\cap B),\; \forall A,B \in S##
c) ##f^{-1}(f(A)) \subseteq A,\; \forall A \subseteq S.##
a) ##\Longrightarrow## b)
Take ##\alpha \in f(A) \cap f(B)## then ##\alpha = f(z_1), \; z_1 \in A## and ##\alpha = f(z_2), \; z_2 \in B##. But since ##f## is 1-1 ##z_1 = z_2## hence ##\alpha \in f(A \cap B)## and ## f(A) \cap f(B) \subseteq f(A\cap B)##.

a) ##\Longrightarrow## c)
Take ##\alpha \in f^{-1}(f(A))## that is ##z = f(\alpha)## for some ##z\in B##. That is
##f(\alpha) \in f(A)## hence ##f(\beta) = z## for some ##\beta \in A## but since ##f## is 1-1 this means ##\alpha = \beta## and ##\beta \in A## so ##f^{-1}(f(A)) \subseteq A##.

To complete the proof I need to either show that c) ##\Longrightarrow## a) and b) ##\Longrightarrow## c) OR show that c) ##\Longrightarrow## a) and b) ##\Longrightarrow## a).

c) ##\Longrightarrow## a)
It's equivalent to show the contrapositive that ##f(x_1) = f(x_2) \Longrightarrow x_1 = x_2##. Take ##x_1, x_ 2 \in A## so that ##f(x_1)= f(x_2)## then by c) ##x_1,x_2 \in f^{-1}(f(A))##. This means that ##z_1 = f(x_1)## and ##z_2 = f(z_2)## for ##z_1,z_2 \in B## but from the premise ##z_1 = z_2##.

I don't seem to get anywhere with the last part nor any luck with any of the other equivalences. Any hints on how to go about it? I'm also wondering If what I've done so far is correct?
a) ⇒ b) and a) ⇒ c) are correct.
I don't exactly understand what you did in c) ⇒ a)

Hint for b) ⇒ c)
Take ##A \subset S##, and set ##B=f^{-1}(f(A)) \setminus A##. Use b) to prove that ##B= \varnothing##.

Hint for c) ⇒ a)
Take ##x\in S## and apply c) to ##A=\{x\}##.
 
  • #3
Cheers! The hints really helped! Think I got them now.

b) ##\Longrightarrow## c)
Let ##A \subseteq S## and set ##B = f^{-1}(f(A))\backslash A## then ##A \cap B = \varnothing##. Using b)
##f(\varnothing ) = f(A \cap B) = f(A)\cap f(B), \; \; \forall A \subseteq S##. Hence
##f(\varnothing ) =f(B)## but ##f(\varnothing) = \varnothing## and ##f(B) = \varnothing## only when ##B = \varnothing## so ##B=\varnothing##.
This gives us that ##f^{-1}(f(A)) = A, \; \; \forall A\subseteq S##.

c) ##\Longrightarrow## a)
Take ##x\in S## and take ##A = \{x\}## then by c) ##f^{-1}(f(A)) = A= \{x\}##. Since the inverse image of ##f(A)## has only one element there is only one ##x## satisfying ##z=f(x)## for each ##x\in S##. That means if ##x_1 \ne x_2## ##f(x_1) \ne f(x_2)## and hence ##f## is 1-1.
 

Suggested for: Range of mappings proof

Replies
4
Views
631
Replies
1
Views
500
Replies
0
Views
185
Replies
3
Views
196
Replies
10
Views
1K
Replies
3
Views
484
Replies
1
Views
162
Back
Top