# Range of rational function

how can i find the range of a rational function

for ex. y=1/x+1

Last edited:

Related Precalculus Mathematics Homework Help News on Phys.org
jbunniii
Homework Helper
Gold Member
What's the definition of the range of a function?

Think what "domain" and "range" are. What can "x" be, and what can "x" not be? With that in mind, what can "y" be and what can "y" not be?

Mark44
Mentor
Also, what exactly is your function? Most would interpret what you have written like so:
$$y = \frac{1}{x} + 1$$

$$y = \frac{1}{x + 1}$$

When you write a fraction on a single line, use parentheses. The second version above should be written this way: y = 1/(x + 1)

ok how would we find the range for that

Do you know what domain and range are? Your instructor would not be giving you rational functions without a thorough treatment of the concepts of domain and range, and how they relate to rational functions.

Mark44
Mentor
ok how would we find the range for that
The range for what? As I already said in post 4, it's not clear what you're working with.

the range for 1/(x+1) .the thing is that i am doing an assignment on rational functions that is ment to be completed without help from the teacher (it will be explained upon completion). i have already researched horizontal and vertical asymptote of rational functions, as well as the domain but i still cant find anything on how to express the range (not in interval notation). dont get me wrong i know what range is.

Last edited:
jbunniii
Homework Helper
Gold Member
the range for 1/(x+1) .the thing is that i am doing an assignment on rational functions that is ment to be completed without help from the teacher (it will be explained upon completion). i have already researched horizontal and vertical asymptote of rational functions, as well as the domain but i still cant find anything on how to express the range (not in interval notation). dont get me wrong i know what range is.
[EDIT] Weird, it was all garbled on my screen when I responded, but now it looks fine, both in my quoted version and in the original post!

OK, so the function of interest is

$$y = \frac{1}{x+1}$$

What's the domain of this function?

thats wat i mean i just didnt know how to do it

y=\\frac{1}{x+3}

jbunniii
Homework Helper
Gold Member
You can click on my equation (or any typeset equation on this site) and it will give you a pop-up window with the Latex code that produced it.

[x]\neq[/-1]

i just made an acc. yesterday

jbunniii
Homework Helper
Gold Member
OK, good. So let's consider two cases:

$$x < -1$$

$$x > -1$$

Start by focusing on the first case, so we're just considering $x < -1$. For $x$ in this range, can I make the function as big as I like? Can I make it as small as I like? If not, then what are some bounds? (Even if they're not the tightest possible bounds, it's a start.)

it would go on to infinity, but wouldnt the range be expressed using y values

jbunniii
Homework Helper
Gold Member
it would go on to infinity, but wouldnt the range be expressed using y values
Yes, the range is expressed using y values.

What do you mean by "it would go on to infinity"? Can you make it infinitely large (positive)? Can you make it infinitely small (negative)?

If $x < -1$, then can y be positive at all?

infinitely small

so how would you express the range ({y|y...)

jbunniii
Homework Helper
Gold Member
infinitely small
OK, so you can make y as negative as you like by varying x over the interval $(-\infty, -1)$. How large can you make y if x is in the same interval?

sorry i am still in math 20 and we didnt take interval notation yet

jbunniii
Homework Helper
Gold Member
sorry i am still in math 20 and we didnt take interval notation yet
No problem. It's just another way of writing

$$x < -1$$

So how big can y get if x is in this interval? Can you make y be positive? Can you make y be zero?

i think you can make it zero, but can you please explain

Last edited:
jbunniii