Rank 0

1. Apr 17, 2009

sauravrt

What does it mean for a matrix to have rank 0 ( zero) ?

2. Apr 17, 2009

quasar987

The rank of a matrix is the dimension of the image of the linear map it represent. Since the only vector space of dimension 0 is the vector space denoted 0 consisting of only one elements (namely, 0), to say that a matrix is of rank 0 is to say that the image of the linear map it represents is the vector space 0.

You can convince yourself that, in turn, this implies that the matrix is the matrix 0 (the matrix having 0 in all its entries...)

3. Apr 17, 2009

sauravrt

Thanks quasar987.

So a matrix with atleast one non-zero element will have atleast rank 1 ?

4. Apr 17, 2009

matt grime

What do you think? And why?

5. Apr 17, 2009

AUMathTutor

Yes, the rank of a matrix is the dimension of the row space.

If a matrix has a zero-dimensional row space, it consists of a single vector - the zero vector. The space consisting of the zero vector only has dimension zero.

If a vector had an entry besides 0, then that row would not be the zero vector. Then the row space would include inifinitely many vectors corresponding to all scalar multiples of that vector... and have dimension at least one.