Let A be a nonzero matrix of size n. Let a k*k submatrix of A be defined as a matrix obtained by deleting any n-k rows and n-k columns of A. Let m denote the largest integer such that some m*m submatrix has a nonzero determinant. Then rank(A) = k.(adsbygoogle = window.adsbygoogle || []).push({});

Conversely suppose that rank(A) = m. There exists a m*m submatrix has a nonzero determinant.

I'm currently trying to prove this theorem. Not quite sure if I should proceed by examining the solution space of A or rather just do something clever with the determinants. I feel like there's a property of determinants that I'm missing that'd make this much easier.

**Physics Forums | Science Articles, Homework Help, Discussion**

Dismiss Notice

Join Physics Forums Today!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

# Rank and submatrices theorem

**Physics Forums | Science Articles, Homework Help, Discussion**