# Rate of change problem

1. Homework Statement

Suppose that t hours after a piece of food is put in the fridge its temperature (in Celsius) is

T(t) = 15 - 3t + $$\frac{4}{t - 1}$$

where 0 $$\leq$$ t $$\leq$$ 5.

Find the rate of change of temperature after one hour.

3. The Attempt at a Solution

Since it's asking for rate of change, I'm guessing I have to find the derivative of the equation with respect to t.

T(t) = 15 - 3t + $$\frac{4}{t - 1}$$

T(t) = 0 - 3 + $$\frac{0(t - 1) - 1(4)}{(t-1)^{2}}$$ (Quotient Rule)

T(t) = -3 + $$\frac{0 - 4}{(t-1)^{2}}$$

T(t) = -3 + $$\frac{-4}{(t-1)^{2}}$$

T(t) = -3 - $$\frac{4}{(t-1)^{2}}$$

Would I just plug in 1 after this?

Related Calculus and Beyond Homework Help News on Phys.org
HallsofIvy
Homework Helper
1. Homework Statement

Suppose that t hours after a piece of food is put in the fridge its temperature (in Celsius) is

T(t) = 15 - 3t + $$\frac{4}{t - 1}$$

where 0 $$\leq$$ t $$\leq$$ 5.

Find the rate of change of temperature after one hour.

3. The Attempt at a Solution

Since it's asking for rate of change, I'm guessing I have to find the derivative of the equation with respect to t.
Don't guess! The derivative of a function is its rate of change!

T(t) = 15 - 3t + $$\frac{4}{t - 1}$$

T(t) = 0 - 3 + $$\frac{0(t - 1) - 1(4)}{(t-1)^{2}}$$ (Quotient Rule)

T(t) = -3 + $$\frac{0 - 4}{(t-1)^{2}}$$

T(t) = -3 + $$\frac{-4}{(t-1)^{2}}$$

T(t) = -3 - $$\frac{4}{(t-1)^{2}}$$

Would I just plug in 1 after this?
That's what you would like to do- but this function has serious problem at t= 1. Do you remember that, in order to have a derivative at a point, the function must be continuous there? Are you sure you have copied the problem correctly? That's a very strange temperature function! Isn't it peculiar that the temperature of the food goes up when it is put in the refridgerator?

Last edited by a moderator:
Yes, I checked and checked again and that is the equation.

What if I were to plug in a value slightly greater than 1? Would that give me the rate of change after one hour?

Last edited:
HallsofIvy