(adsbygoogle = window.adsbygoogle || []).push({}); 1. The problem statement, all variables and given/known data

Show that the reciprocal cubic of cubic lattice is also cubic.

2. Relevant equations

[tex]cos\alpha*=\frac{cos\beta cos\gamma-cos\alpha}{sin\beta sin\gamma}[/tex]

[tex]cos\beta*=\frac{cos\alpha cos\gamma-cos\beta}{sin\alpha sin\gamma}[/tex]

[tex]cos\gamma*=\frac{cos\alpha cos\beta-cos\gamma}{sin\alpha sin\beta}[/tex]

[tex]\vec{a*}=\frac{\vec{b}\times\vec{c}}{V}[/tex]

[tex]\vec{b*}=\frac{\vec{c}\times\vec{a}}{V}[/tex]

[tex]\vec{c*}=\frac{\vec{a}\times\vec{b}}{V}[/tex]

3. The attempt at a solution

If I use this formula I will show that [tex]\alpha*=\beta*=\gamma*=90^{\circ}[/tex]

and [tex]a*=b*=c*=\frac{1}{a}[/tex]

and so reciprocal lattice of cubic lattice is cubic. Q.E.D.

But I don't know from where I get this angle relations

[tex]cos\alpha*=\frac{cos\beta cos\gamma-cos\alpha}{sin\beta sin\gamma}[/tex]

[tex]cos\beta*=\frac{cos\alpha cos\gamma-cos\beta}{sin\alpha sin\gamma}[/tex]

[tex]cos\gamma*=\frac{cos\alpha cos\beta-cos\gamma}{sin\alpha sin\beta}[/tex]

**Physics Forums | Science Articles, Homework Help, Discussion**

Dismiss Notice

Join Physics Forums Today!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

# Homework Help: Reciprocal lattice

**Physics Forums | Science Articles, Homework Help, Discussion**