(adsbygoogle = window.adsbygoogle || []).push({}); 1. The problem statement, all variables and given/known data

A rectangle is placed symmetrically inside an ellipse (i.e. with all four corners

touching the ellipse) which is defined by:

[tex]x^{2} + 4y^{2} = 1[/tex]

Find the length of the longest perimeter possible for such a rectangle.

2. Relevant equations

Within the problem statement and solutions.

3. The attempt at a solution

Firstly rearranged the given equation:

[tex]x^{2} + 4y^{2} = 1 \implies x^{2} + 4y^{2} - 1 = 0[/tex]

Then stated the equation for the perimeter of the rectangle:

[tex]P = 2x + 2y[/tex]

Hence need to extremise:

[tex]f(x,y) = 2x + 2y[/tex]

.. on the ellipse:

[tex]g(x,y) = x^{2} + 4y^{2} - 1 = 0[/tex]

Therefore:

[tex]F(x,y,\lambda) = f + \lambda g = 2x + 2y + \lambda\left(x^{2} + 4y^{2} - 1\right)[/tex]

Then calculate partial derivatives:

[tex]\frac{\partial F}{\partial x} = 2 + 2y + \lambda\left(x^{2} + 4y^{2} - 1\right) = 0[/tex]

[tex]\frac{\partial F}{\partial y} = 2 + 2x + \lambda\left(x^{2} + 4y^{2} - 1\right) = 0[/tex]

[tex]\frac{\partial F}{\partial \lambda} = 2x + 2y + \left(x^{2} + 4y^{2} - 1\right) = 0[/tex]

Now I need to look for 'consistent solutions' (i.e. values for x, y, \lambda) within those equations, but I'm a bit stuck with that now

**Physics Forums | Science Articles, Homework Help, Discussion**

Join Physics Forums Today!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

# Homework Help: Rectangle Inside An Ellipse

**Physics Forums | Science Articles, Homework Help, Discussion**