1. Limited time only! Sign up for a free 30min personal tutor trial with Chegg Tutors
    Dismiss Notice
Dismiss Notice
Join Physics Forums Today!
The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

Homework Help: Recurrence Relation

  1. Jun 15, 2010 #1
    1. The problem statement, all variables and given/known data

    The sequence [tex]f_n[/tex] is defined by [tex]f_0=1, f_1=2[/tex] and [tex]f_n=-2f_{n-1}+15f_{n-2}[/tex] when [tex]n \geq 2[/tex]. Let

    [tex]
    F(x)= \sum_{n \geq 2}f_nx^n
    [/tex]

    be the generating function for the sequence [tex]f_0,f_1,...,f_n,...[/tex]

    Find polynomials P(x) and Q(x) such that

    [tex]
    F(x)=\frac{P(x)}{Q(x)}
    [/tex]

    3. The attempt at a solution

    [tex]
    f_n+2f_{n-1}-15f_{n-2}=0
    [/tex]

    So since we know that [tex]F(x)=f_0+f_1x+f_2x^2+...+f_nx^n+...[/tex]

    [tex]
    F(x)=f_0+f_1x+f_2x^2+...+f_nx^n+...
    [/tex]

    [tex]
    2xF(x)=2f_0x+2f_1x^2+...+2f_{n-1}x^n+...
    [/tex]

    [tex]
    -15x^2F(x)= -15f_0x^2-...-15f_{n-2}x^n-...
    [/tex]

    Summing these I get

    [tex]
    (1+2x-15x^2)F(x)=f_0+(f_1+2f_0)x+(f_2+2f_1-15f_0)x^2+...+(f_n+2f_{n-1}-15f_{n-2})x^n
    [/tex]

    After some algebra and substituting [tex]f_0=1, f_1=2[/tex] I get

    [tex]
    F(x)=\frac{1+4x}{1+2x-15x^2}
    [/tex]

    So

    [tex]
    P(x)=1+4x
    [/tex]

    and

    [tex]
    Q(x)=1+2x-15x^2
    [/tex]

    Is this correct?
     
  2. jcsd
  3. Jun 21, 2010 #2

    lanedance

    User Avatar
    Homework Helper

    looks reasonable to me, you can always check by diferntiating you function a few times
     
Share this great discussion with others via Reddit, Google+, Twitter, or Facebook