(adsbygoogle = window.adsbygoogle || []).push({}); 1. The problem statement, all variables and given/known data

Basically, the problem states that a cavity at temperature T is emitting EM waves isotropically in all directions (with frequency distribution of Planck's Law). If the time averaged density is <e>, find the value of d<S>/dw where w is the solid angle and the quantity is the effective poynting vector magnitude per unit solid angle. Hence I am to show the power per unit area that passes in one direction (i.e. into solid angle of 2 pi) through any plane within the cavity is dP/dA= (c/4)<e>/ Note that the unit system is Gaussian. Basically, I am stuck at the first part of the problem.

2. Relevant equations

Some equations that I know are <S>=c<e>, the total solid angle for a sphere is 4 pi.

3. The attempt at a solution

I have a feeling the solution is really simple but I cannot get into the physics of it. Is d<S>/dw just <S>/ 4pi= (c/4 pi)<e>? But then integrating over a solid angle of 2 pi gives me (c/2)<e> which is off by a factor of 2. And I really don't get the solid angle business. Can someone point me in the right direction? Thanks.

**Physics Forums | Science Articles, Homework Help, Discussion**

Join Physics Forums Today!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

# Homework Help: Relating time averaged energy density to the Poynting vector per unit solid angle

**Physics Forums | Science Articles, Homework Help, Discussion**