Hi,(adsbygoogle = window.adsbygoogle || []).push({});

I was trying to help a student with an assignment in topology when I was stumped by a symbol that I had not seen before. Here's the problem.

a.) Let [itex](X,\square)[/itex] be a topological space with [itex]A\subseteq X[/itex] and [itex]U\subseteq A[/itex]. Prove that [itex]Bd_A(U)\subseteq A\cap Bd_X(U)[/itex].

The first thing that has got me stumped here is the subscripted boundaries. I have never seen this before, but I tried to reason it out as follows. The "ordinary" boundary of a set A is [itex]Bd(A)=[ext(A)]^c\cap[int(A)]^c[/itex], the intersection of all the points that are neither in the exterior of [itex]A[/itex] nor in the interior of [itex]A[/itex]. The first problem is how to relate the boundary of a set to a second set (and thus introduce the subscripts), so I went back to the definition of the complement of a set [itex]A[/itex], which is the difference [itex]\mathbb{U}-A[/itex], where [itex]\mathbb{U}[/itex] is the universal set. This led me to conjecture that:

[itex]Bd_A(U)=[A-ext(U)]\cap[A-int(U)][/itex]

[itex]Bd_X(U)=[X-ext(U)]\cap[X-int(U)][/itex]

Before I move on, can someone tell me if that is correct? Thanks.

**Physics Forums | Science Articles, Homework Help, Discussion**

Dismiss Notice

Join Physics Forums Today!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

# Relative Boundaries in General Topology

**Physics Forums | Science Articles, Homework Help, Discussion**