• Support PF! Buy your school textbooks, materials and every day products via PF Here!

Relativistic escape velocity

223
7
1. Homework Statement
Calculate the escape velocity on the surface of the neutron star in the previous problem (##m = \frac{2}{3} \cdot 2,1 \cdot M_{\odot}##; ##R = 15km##).

Hint: Basic physics. Note, however, that the escape velocity is not going to be small when compared to the speed of light.

2. Homework Equations
Relativistic kinetic energy:
\begin{equation}
K = \gamma mc^2 - mc^2 = \sqrt{(pc)^2 + (mc^2)^2} - mc^2
\end{equation}

Standard Newtonian potential energy:
\begin{equation}
V_N = -G\frac{mM}{r}
\end{equation}

Relativistic potential energy:
\begin{equation}
V_R = ?
\end{equation}

3. The Attempt at a Solution

My idea was to set the kinetic and potential energies to be equal, and solve for the speed as usual. The problem is, I don't know (how to derive) the expression for a relativistic potential, which I'm probably going to need because, you know, it's a neutron star we're talking about here.

I found a source (since none of my books were of any use), that simply multiplies the standard Newtonian potential with the Lorentz-factor ##\gamma##, but I'm not sure that's allowed.

Is it, and if so, why?
 
223
7
Scratch everything I said. I got the wrong result because of an input error... No such thing as a relativistic potential, apparently.

GG, calculator with a small screen.
 

Want to reply to this thread?

"Relativistic escape velocity" You must log in or register to reply here.

Related Threads for: Relativistic escape velocity

Replies
5
Views
2K
  • Posted
Replies
2
Views
310
Replies
6
Views
5K
Replies
5
Views
729

Physics Forums Values

We Value Quality
• Topics based on mainstream science
• Proper English grammar and spelling
We Value Civility
• Positive and compassionate attitudes
• Patience while debating
We Value Productivity
• Disciplined to remain on-topic
• Recognition of own weaknesses
• Solo and co-op problem solving
Top