- 12

- 0

## Main Question or Discussion Point

Can anyone explain me the term 'Relativistic heat force'???

Any research papers dealing with this topic??

Thanking in advance..

Any research papers dealing with this topic??

Thanking in advance..

- Thread starter Frank Lampard
- Start date

- 12

- 0

Can anyone explain me the term 'Relativistic heat force'???

Any research papers dealing with this topic??

Thanking in advance..

Any research papers dealing with this topic??

Thanking in advance..

jtbell

Mentor

- 15,395

- 3,181

Perhaps it would help us if you can say where you saw this phrase, and what the context was. I don't claim to be an expert on current developments in relativity or thermodynamics, but I'm pretty sure I've never seen this phrase before.

- 12

- 0

– or what is real in Physics?" by Manfred Requardt.

Here's the link--arXiv:0801.2639v1 [gr-qc] 17 Jan 2008

- 3,961

- 20

In equation (2) the paper clearly states [tex] \gamma = (1-u^2/c^2)^{-1/2}[/tex]

In equation (7) the paper states [tex] m = m_o \cdot \gamma = m_o \cdot (1-u^2/c^2)^{-1/2}[/tex]

So far, this all very classic relativity but perhaps a bit old fashioned in using the relativistic mass increase concept. Nevetheless we note that by the expression m_o dot gamma they mean an increase of mass with increase of relative velocity.

Now just before equation (26) the paper states:

"Using the above expression for G, the fact that p is a Lorentz invariant, i.e. p = p0, and the change of volume by Lorentz contraction, [tex] V = V_o \cdot \gamma [/tex] , one can integrate the above expression and get.."

Now of course I am very happy that they assume that pressure is invariant as everyone here knows that is my belief, but by V_o dot gamma they must be implying an increase of volume with increase of relative velocity. Is that not the opposite of length contraction and therefore a mistake? Maybe it is me that missing something basic?

- 321

- 0

In equation (2) the paper clearly states [tex] \gamma = (1-u^2/c^2)^{-1/2}[/tex]

In equation (7) the paper states [tex] m = m_o \cdot \gamma = m_o \cdot (1-u^2/c^2)^{-1/2}[/tex]

So far, this all very classic relativity but perhaps a bit old fashioned in using the relativistic mass increase concept. Nevetheless we note that by the expression m_o dot gamma they mean an increase of mass with increase of relative velocity.

Now just before equation (26) the paper states:

"Using the above expression for G, the fact that p is a Lorentz invariant, i.e. p = p0, and the change of volume by Lorentz contraction, [tex] V = V_o \cdot \gamma [/tex] , one can integrate the above expression and get.."

Now of course I am very happy that they assume that pressure is invariant as everyone here knows that is my belief, but by V_o dot gamma they must be implying an increase of volume with increase of relative velocity. Is that not the opposite of length contraction and therefore a mistake? Maybe it is me that missing something basic?

It's a typo. The authors use [tex]V=V_0 \gamma ^{-1}[/tex] a few lines below in eq (28).

- 3,961

- 20

Thanks! The typo really threw me :PIt's a typo. The authors use [tex]V=V_0 \gamma ^{-1}[/tex] a few lines below in eq (28).