I have been trying to derive(adsbygoogle = window.adsbygoogle || []).push({}); whyrelativistic momentum is defined as ##p=\gamma mv##.

I set up a collision between 2 same balls (##m_1 = m_2 = m##). Before the collision these two balls travel one towards another in ##x## direction with velocities ##{v_1}_x = (-{v_2}_x) = v##. After the collision these two balls travel away from each other with velocity ##{v_1}_y = (-{v_2}_y) = v##. Coordinate system travells from left to right with velocity ##u=v##at all times(after and before collision).

Please see the pictures below where picture (a) shows situation before collision and picture (b) after collision.

http://shrani.si/f/2A/m3/4kDXDQo1/momentum.png [Broken]

Below is a proof that Newtonian momentum ##mv## is not preserved in coordinate system ##x'y'##. I used ##[\, | \,]## to split ##x## and ##y## components. ##p_z'## is momentum before collision where ##p_k'## is momentum after collision.

[itex]

\scriptsize

\begin{split}

p_z' &= \left[ m_1 {v_1}_x' + m_2 {v_2}_x'\, \biggl| \, 0 \right] = \left[ m_1 0 + m_2 \left( \frac{{v_2}_x - u}{1-{v_2}_x\frac{u}{c^2}} \right)\, \biggl| \, 0 \right]= \left[ m \left( \frac{-v - v}{1+ v \frac{v}{c^2}} \right) \, \biggl| \, 0 \right] \\

p_z' &= \left[ - 2mv \left( \frac{1}{1+ \frac{v^2}{c^2}}\right) \, \biggl| \, 0 \right]

\end{split}

[/itex]

[itex]

\scriptsize

\begin{split}

p_k' &= \left[-2mv \, \biggl| \,m_1 {v_1}_y' + m_2 {v_2}_y'\right]=\left[ -2mv \, \biggl| \, m_1 \left( \frac{{v_1}_y}{\gamma \left(1 - {v_1}_y \frac{u}{c^2}\right)} \right) + m_2 \left( \frac{{v_2}_y}{\gamma \left(1 - {v_2}_y \frac{u}{c^2}\right)} \right) \right]\\

p_k' &= \left[ -2mv \, \biggl| \, m \left( \frac{v}{\gamma \left(1 - v \frac{v}{c^2}\right)} \right) - m \left( \frac{v}{\gamma \left(1 - v \frac{v}{c^2}\right)} \right)\right]\\

p_k' &= \left[ -2mv \, \biggl| \, 0 \right]

\end{split}

[/itex]

It is clear that ##x## components differ by factor ##1/\left(1+\frac{v^2}{c^2}\right)##.

QUESTION:I want to know why do we multiply Newtonian momentum ##p=mv## by factor ##\gamma = 1/ \sqrt{1 - \frac{v^2}{c^2}}## and where is the connection between ##\gamma## and factor ##1/\left(1+\frac{v^2}{c^2}\right)## which i got?

FURTHER EXPLAINATION:

In the proof above I used velocity transformations derived below (derivation is taken from here):

[itex]

v_x' = \frac{dx'}{dt'}=\frac{\gamma (d x - u d t)}{\gamma \left(d t - d x \frac{u}{c^2} \right)} = \frac{d x - u d t}{d t - d x \frac{u}{c^2}} = \frac{\frac{d x}{d t} - u \frac{d t}{d t}}{\frac{d t}{d t} - \frac{d x}{d t} \frac{u}{c^2}} \Longrightarrow \boxed{v_x' = \frac{v_x - u}{1- v_x \frac{u}{c^2}}}

[/itex]

[itex]

v_y' = \frac{dy'}{dt'}=\frac{d y}{\gamma \left(d t - d x \frac{u}{c^2} \right)} = \frac{\frac{dy}{dt}}{\gamma \left(\frac{dt}{dt} - \frac{dx}{dt} \frac{u}{c^2} \right)} \Longrightarrow \boxed{v_y' = \frac{v_y}{\gamma \left(1 - v_x \frac{u}{c^2} \right)}}

[/itex]

**Physics Forums | Science Articles, Homework Help, Discussion**

Join Physics Forums Today!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

# Relativistic momentum

**Physics Forums | Science Articles, Homework Help, Discussion**