Dismiss Notice
Join Physics Forums Today!
The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

Relativistic momentum

  1. Nov 12, 2012 #1
    I have been trying to derive why relativistic momentum is defined as ##p=\gamma mv##.

    I set up a collision between 2 same balls (##m_1 = m_2 = m##). Before the collision these two balls travel one towards another in ##x## direction with velocities ##{v_1}_x = (-{v_2}_x) = v##. After the collision these two balls travel away from each other with velocity ##{v_1}_y = (-{v_2}_y) = v##. Coordinate system travells from left to right with velocity ##u=v## at all times (after and before collision).

    Please see the pictures below where picture (a) shows situation before collision and picture (b) after collision.

    http://shrani.si/f/2A/m3/4kDXDQo1/momentum.png [Broken]

    Below is a proof that Newtonian momentum ##mv## is not preserved in coordinate system ##x'y'##. I used ##[\, | \,]## to split ##x## and ##y## components. ##p_z'## is momentum before collision where ##p_k'## is momentum after collision.

    [itex]
    \scriptsize
    \begin{split}
    p_z' &= \left[ m_1 {v_1}_x' + m_2 {v_2}_x'\, \biggl| \, 0 \right] = \left[ m_1 0 + m_2 \left( \frac{{v_2}_x - u}{1-{v_2}_x\frac{u}{c^2}} \right)\, \biggl| \, 0 \right]= \left[ m \left( \frac{-v - v}{1+ v \frac{v}{c^2}} \right) \, \biggl| \, 0 \right] \\
    p_z' &= \left[ - 2mv \left( \frac{1}{1+ \frac{v^2}{c^2}}\right) \, \biggl| \, 0 \right]
    \end{split}
    [/itex]

    [itex]
    \scriptsize
    \begin{split}
    p_k' &= \left[-2mv \, \biggl| \,m_1 {v_1}_y' + m_2 {v_2}_y'\right]=\left[ -2mv \, \biggl| \, m_1 \left( \frac{{v_1}_y}{\gamma \left(1 - {v_1}_y \frac{u}{c^2}\right)} \right) + m_2 \left( \frac{{v_2}_y}{\gamma \left(1 - {v_2}_y \frac{u}{c^2}\right)} \right) \right]\\
    p_k' &= \left[ -2mv \, \biggl| \, m \left( \frac{v}{\gamma \left(1 - v \frac{v}{c^2}\right)} \right) - m \left( \frac{v}{\gamma \left(1 - v \frac{v}{c^2}\right)} \right)\right]\\
    p_k' &= \left[ -2mv \, \biggl| \, 0 \right]
    \end{split}
    [/itex]

    It is clear that ##x## components differ by factor ##1/\left(1+\frac{v^2}{c^2}\right)##.

    QUESTION: I want to know why do we multiply Newtonian momentum ##p=mv## by factor ##\gamma = 1/ \sqrt{1 - \frac{v^2}{c^2}}## and where is the connection between ##\gamma## and factor ##1/\left(1+\frac{v^2}{c^2}\right)## which i got?

    FURTHER EXPLAINATION:
    In the proof above I used velocity transformations derived below (derivation is taken from here):

    [itex]
    v_x' = \frac{dx'}{dt'}=\frac{\gamma (d x - u d t)}{\gamma \left(d t - d x \frac{u}{c^2} \right)} = \frac{d x - u d t}{d t - d x \frac{u}{c^2}} = \frac{\frac{d x}{d t} - u \frac{d t}{d t}}{\frac{d t}{d t} - \frac{d x}{d t} \frac{u}{c^2}} \Longrightarrow \boxed{v_x' = \frac{v_x - u}{1- v_x \frac{u}{c^2}}}
    [/itex]


    [itex]
    v_y' = \frac{dy'}{dt'}=\frac{d y}{\gamma \left(d t - d x \frac{u}{c^2} \right)} = \frac{\frac{dy}{dt}}{\gamma \left(\frac{dt}{dt} - \frac{dx}{dt} \frac{u}{c^2} \right)} \Longrightarrow \boxed{v_y' = \frac{v_y}{\gamma \left(1 - v_x \frac{u}{c^2} \right)}}
    [/itex]
     
    Last edited by a moderator: May 6, 2017
  2. jcsd
  3. Nov 12, 2012 #2

    Nugatory

    User Avatar

    Staff: Mentor

    Look carefully at the x component of the momentum in the first expression in the first line of your derivation of [itex]p_k^{'}[/itex]
     
  4. Nov 13, 2012 #3
    You mean this expression?

    [itex]
    p_k' = \left[ -2mv\, \biggl| \, m_1 {v_1}_y + m_2 {v_2}_y \right]
    [/itex]

    Coordinate system and observer in its origin move with ##u=v## from left to right at all times. This is why after collision observer in ##xy## would say that balls don't move in ##x## direction, while observer in ##x'y'## would state, that they both move in opposite direction. This is where i got my ##x## component ##m_1 {v_1}_x' + m_2 {v_2}_x' = m (-v) + m(-v) = -2mv##.
     
    Last edited: Nov 13, 2012
  5. Nov 13, 2012 #4
  6. Nov 14, 2012 #5
Know someone interested in this topic? Share this thread via Reddit, Google+, Twitter, or Facebook




Similar Discussions: Relativistic momentum
  1. Relativistic momentum (Replies: 35)

  2. Relativistic momentum (Replies: 9)

  3. Relativistic momentum (Replies: 2)

  4. Relativistic Momentum (Replies: 2)

Loading...