Given the lifetime of a muon as 2.197 microseconds, and the rest mass of 105.65MeV, and a total particle energy of 10GeV, I need to calculate how far, in the rest frame, the particle will travel before decay.(adsbygoogle = window.adsbygoogle || []).push({});

2. Relevant equations

Beta=v/c

Gamma=1/sqrt(1-beta^2)

deltaT'=gamma*deltaT

L'=L/gamma

Attempts/Understanding Thus Far

The equations aren't complicated but I can't quite make them mesh with my understanding. If deltaT' is the moving time, dividing it by gamma to get the stationary period will always yield a shorter time amount of time passing for the stationary period; isn't this the opposite of what I want?

And, in order to figure out the total distance traveled, as measured in the rest frame, is it enough to multiply v*t'=L', then multiply by gamma to get the rest frame distance? Do I need to convert the time as well? Or would this lead to too many factors of gamma?

**Physics Forums | Science Articles, Homework Help, Discussion**

Dismiss Notice

Join Physics Forums Today!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

# Relativistic Muon Lifetimes

**Physics Forums | Science Articles, Homework Help, Discussion**