- #1

- 25

- 0

What I'd like to learn about is what happens when the field is not complex but still quite well-behaved. In particular if we have an algebraically closed field whose characteristic doesn't divide the order of the group what changes?

The reason I ask is that there doesn't seem to be a very good treatment of this in any of the books I've seen. Can anyone offer any suggestions? I guess I could start from scratch and go though all the proofs in the complex case from the bottom up checking whether they still hold, but it would be nice to have a reference.

Are there any major pitfalls when trying to transfer the theory from the complex case?