Dismiss Notice
Join Physics Forums Today!
The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

Research topic

  1. Nov 30, 2004 #1
    so, i'm currently working on my bachelor's in mathematics, and seriously considering going on to persue a PhD after that. Currently, I'm frustrated (not for long, semester is nearly over) with my calc II course and "matrix theory and linear algebra", though not so much the latter as the former.

    I would like to do some research, or independant studies. There is an incredible amount of material though, and 99% seems over my head. I've read some online journals, read a bit on rudimentary knot theory, and have heard of modular forms, though can't find anything that is even remotely accessible by myself.

    In short, my question is, what are some interesting mathematics I could play with, research, perhaps even write a paper on, without having much knowledge beyond the two classes i'm taking now? i'm obviously willing to read up on pre-requisite subjects if that is required for the main topic I would be looking into. Thanks.
     
  2. jcsd
  3. Nov 30, 2004 #2

    matt grime

    User Avatar
    Science Advisor
    Homework Helper

    Without wishing to be a killjoy, there is little to no chance of you being able to do any maths research of an original nature. The best you could do is to be a research assistant to one of the professors and do some of the tedious legwork for her.

    Maths research is incredibly hard, and it's not a surprise you can't understand the journals. Nor should it be a concern.
     
  4. Nov 30, 2004 #3
    I don't care whether or not it's original. I'm just looking for suggestions on a topic that is accessible and interesting to me personally.
     
  5. Nov 30, 2004 #4

    matt grime

    User Avatar
    Science Advisor
    Homework Helper

    Sorry, I took "write a paper" to mean something different from your intention.
     
  6. Nov 30, 2004 #5

    arildno

    User Avatar
    Science Advisor
    Homework Helper
    Gold Member
    Dearly Missed

    Without being able to give you a detailed and specific programme, you should perhaps take into consideration the following two more "personal" sides:
    1) What have particularly fascinated YOU in maths?
    Is there some specific area which seems interesting to you personally?
    2) How well do you get along with the different lecturers/tutors?
    Is there someone you really think you could have a good and constructive advisor/student relation with?
     
  7. Nov 30, 2004 #6
    Well, the things I have mentioned about are interesting to me, but, a bit above and beyond. There looks to be a good book on knot theory recently published by the AMS that I may get my hands on soon. Anything with symmetry or patterns I find interesting.

    As for professors I could talk to, there are 2 so far. One I had all last year, and I went to visit him just the other day. He is more along the lines of a teacher than a mathematician. The other, I have for calc2 right now. I don't talk to him very often, and he is a bit inaccessible (personality wise). He does do, or has done, research. I am going to go in to his office soon and ask him essentially the same question, and talk about different options for the future. I would like to have a little bit of knowledge of something before I go in there though. I really feel like I'm going to be going in there clueless, but that is why I'm going in the first place. It'd be nice to have a topic or two that looks interesting that we could discuss (on very general terms).
     
  8. Nov 30, 2004 #7

    arildno

    User Avatar
    Science Advisor
    Homework Helper
    Gold Member
    Dearly Missed

    Just remember:
    You are not the first "clueless" person to enter a professor's office!
    They are used to that; in fact, I think most would be rather surprised if a student early on his studies had a clear conception of all the details in his future research.
     
  9. Nov 30, 2004 #8
    You're absolutely correct. I suppose I feel like I'm meeting up to suggest a topic for my final dissertation, when in fact, I'm just going to a teacher to say "hey, i want to do stuff that is beyond what we do in class, where do you suggest i start?"
     
  10. Nov 30, 2004 #9

    arildno

    User Avatar
    Science Advisor
    Homework Helper
    Gold Member
    Dearly Missed

    Well, he would probably be pleased to guide you on if you ask him:

    "I'm kind of interested in so-and-so (fill in your own interests), and I really would like to know what material I ought to use to study this stuff a bit further on my own".

    I think he could give you very good advice on that (but probably with the cautionary remark: Don't neglect your current curriculum..:wink:)
     
  11. Nov 30, 2004 #10

    mathwonk

    User Avatar
    Science Advisor
    Homework Helper
    2015 Award

    jason cantarella at the university of georgia math dept works on knot theory and has a unmber of downloadable papers on his website.

    the basic text on the topic is knots and links by dale rolfsen, long out of print from publish or perish. maybe available again now.

    a number of universities including georgia have summer programs called REU's (Research experience for undergraduates) intended to introduce undergrads to research and somehow or other they manage.

    there are well known programs at Boston University in number theory for undergrads. check out glenn stevens there. the number theory community has perhaps the best and longest running tradition of good teaching for undergrads, and maybe also grads.


    heres a used copy of rolfsen for you. they are rather scarce.

    Rolfsen, Dale
    Knots and Links (Mathematics Lectures, No. 7)
    Houston, TX, U.S.A.: Publish or Perish, Incorporated, 1976*VG, clean, no writing, no highlighting.
    ISBN: 0914098160
    Bookseller Inventory #ABE-311731660
    *


    Price:*US$*50.00 (Convert Currency) Shipping:*Rates & Speed


    Bookseller:*Ion Fine Books
    (Search this Bookseller's Books) (More Bookseller Information)


    Terms of Sale:*TBA
    Shipping Terms:*Shipping costs are based on books weighing 2.2 LB, or 1 KG. If your book order is heavy or oversized, we may contact you to let you know extra shipping is required.


    Accepted Payment Methods:
    - Visa
    - MasterCard
    - Money Order
    - Paypal


    As to doing research, get in the habit if asking questions. in your courses when they prove things, ask yourself what they are not proving.

    Oh yes, you said also you are interested in modular forms. you need to learn complex analysis first, but there is a wonderful book on the topic that starts slow and gets very far by Serre, called Course in Arithmetic.

    there is another nice little book by Robert Gunning, but you probably cannot read it yet.

    By the way, what Matt Grime said is true, math research is very hard, so learn all you can and then go with what you love. When something is hard it is crucial to be doing what you love.
     
    Last edited: Nov 30, 2004
  12. Dec 1, 2004 #11
    Thanks a bunch for the info. I have already looked into the REUs, and ended up discovering the math in moscow program, which I will be participating in for the fall 2006 semester (ways off, but i'm excited). 50 bucks is a bit steep for a book, though, compared to texts i guess it is not. I am going to go and see if the library has the Course in Arithmetic, or something on complex analysis at the least.

    Again, thanks a whole lot
     
  13. Dec 1, 2004 #12
    I have been nosing around on jason cantarella's site, and I love it. the pictures are pretty cool, and now i'm moving on to his papers. thanks again
     
  14. Dec 1, 2004 #13
    trance--If you're interested in calc II (probably my favorite of the beginning calc courses, because of sequences of series), then you should seriously take an analysis course.

    For instance, my school offers Analysis I and II. What these courses do is they take what you learn in calc I and II and explain the theory behind them. I'm in Analysis I right now and love it. It's nothing like calculus though, there's no numbers really! No more plug and chug as they say. A lot of writing proofs of theorems. It is so fun though. It might turn you off though, as it is very hard and requires quite a different mindset when compared to calculus I II III and linear algebra/matricies/differential equations.
     
  15. Dec 1, 2004 #14
    Analysis sounds great. I like doing that sort of math, and only get a taste of it in matrix theory (I haven't seen a number in there in a long time), and we do lots of proofs. calc 2 for me was really boring. very mechanical, and we took forever getting through techniques of integration. boring. we have no analysis course here (northern michigan university), though I'm sure something makes up for it (inadequately). the next 3 semesters i will be taking calc 3, abstract algebra, and diff eq.

    Also, i found the William S. Massey book, Algebraic Topology: An Introduction. near those, i also ran into some books that look really good. Geometry from a Differentiable Viewpoint by John McCleary, and The Shape of Space, 2nd ed, by Jeffrey R. Weeks. on top of those, i ran across this book in the new books section (which i was unaware existed until today at the university library), called Realistic Rationalism by Jerrold J. Katz of MIT. I thought at first it was just another philosophy treatise, but, it's a book about the philosophy of mathematics. reading the intro and a few pages, it looks to be interesting.
     
  16. Dec 1, 2004 #15

    mathwonk

    User Avatar
    Science Advisor
    Homework Helper
    2015 Award

    try "topology from the differentiable viewpoint", the alltime classic by john milnor.

    and for analysis just get a good calculus book, like courant or spivak, or apostol.

    then if you want a great analysis book you will keep all your life, try dieudonne, foundations of modern analysis.
     
  17. Dec 1, 2004 #16
    I've got the James Stewart Calculus textbook, that i've used for 2 semesters and I have mastered nearly everything in it. this is single variable though. for calc 3 next semester i am getting a new and different one. i'm not sure who it is authored by, though. I am debating whether or not I want to keep the one I have, or sell it back.

    are the books you recommended textbooks, or more like, for lack of a better work, regular math books?
     
  18. Dec 1, 2004 #17

    JasonRox

    User Avatar
    Homework Helper
    Gold Member

    I did exactly what trancefishy is going to do.

    I went to the professor and said the stuff in the class is too easy and I was getting bored. I told I wanted to know if I was pure math material before dropping the idea of attempting. So, I asked if Stewart's textbook was real math, he said no and recommend Micheal Spivak's text.

    I strongly recommend getting Spivak's text because as of now, you are behind. Maybe not behind, but you will sure feel like an idiot. I wish I asked a lot earlier.
     
  19. Dec 1, 2004 #18

    mathwonk

    User Avatar
    Science Advisor
    Homework Helper
    2015 Award

    as jason rox says, stewart is a decent middle range text, but nowhere near the level of math majors at top schools, which is what spivak is for. the good books are spivak, courant, and apostol.

    (if you think 50 bucks is high wait till you price those.)

    have you thought of transferring to ann arbor? that is one of the best math depts in the world.
     
  20. Dec 1, 2004 #19

    JasonRox

    User Avatar
    Homework Helper
    Gold Member

    I got Spivak for $10CDN at a used book store. I also got Halliday/Resnic (Physics) for $5CDN. Halliday/Resnick is mildly used and Spivak's is brand spanking new.

    I know you weren't speaking to me, but I've been thinking of the University of Waterloo since I'm in Canada. I've been looking up the courses they offer and some of the material they are going through as Calculus I,II,III and its much better than what my school offers. I meet my prof on a weekly basis now and we discuss whatever question in Spivak's text, which is priceless. I have been on the text for only 3 weeks now and its a pain in the ass to work on it when you have all these annoying classes and work on the weekend. I hope I can catch up to where we are so I can just follow along with it for Calculus II next term.
     
  21. Dec 1, 2004 #20

    JasonRox

    User Avatar
    Homework Helper
    Gold Member

    By the way, I don't think it will happen.

    I have a hard time agreeing/understanding the concept of the proof by induction. The steps they take make sense and are normally obvious, but I don't know if I accept it as proof. It doesn't feel like its enough.
     
Know someone interested in this topic? Share this thread via Reddit, Google+, Twitter, or Facebook

Have something to add?



Similar Discussions: Research topic
  1. Topics in Mathematics (Replies: 3)

  2. Topic Suggestions (Replies: 0)

Loading...