An ideal gas undergoes a reversible, cycli process. First it expands isothermally from state A to state B. It is then compressed adiabatically to state C. Finally, it is cooled at constant volume to its original state, A.(adsbygoogle = window.adsbygoogle || []).push({});

I have to calculate the change in entropy of the gas in each one of the three processes and show that there is no net change in the cyclic process.

O.K. From A to B Delta S is nRln(V2/V1) since the process from A to B is isothermal. Delta S is 0 from B to C since that process occurs adiabatically.

But I am having trouble with the Delta S for the process from C to A. So far I have Delta S is Cv ln(T1/T2) But I'm having trouble converting this to something similar to the Delta S for A to B

Could someone please tell me if I'm on the right track with this problem, and possibly give me a hint

**Physics Forums | Science Articles, Homework Help, Discussion**

Join Physics Forums Today!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

# Homework Help: Reversible cyclic process

**Physics Forums | Science Articles, Homework Help, Discussion**