I Rewriting ODEs

Hi!

When we want to look at different singular points for e.g Bessel's eq. $$u´´(x) + \frac{u'(x)}{x} + (1- \frac{n^2}{x^2})u(x)$$.

We usually evaluate the equation letting x= 1/z. But I don't algebraically see how such a substitution ends up with $$w´´(z) +( \frac{2}{z}- \frac{1}{z^2})z*w'(z) + \frac{1}{z^4}(1- n^2 z^2)w(z)$$.

Letting x= 1/z, and derive both sides gives ##1/z^2 z'## but I simply don't know how to go from u(x) to w(z) which is very central and should be very basic and just one microstep in long calculations lol.
 

Orodruin

Staff Emeritus
Science Advisor
Homework Helper
Insights Author
Gold Member
2018 Award
15,850
5,847
It is assumed that ##w(z) = u(1/z)##. Differentiate both sides with respect to ##z## (two times) and insert into Bessel's differential equation and you should end up with something that looks like your last expression. However, note that your second term cannot be correct as the prefactor needs to have only a single power of ##z##. Also note that the derivatives of ##w## are with respect to ##z##, not with respect to ##x##. (Or rather, ##w'## denotes the derivative of ##w## as a function, i.e., the derivative with respect to the argument of the function.)
 

Want to reply to this thread?

"Rewriting ODEs" You must log in or register to reply here.

Related Threads for: Rewriting ODEs

Replies
5
Views
3K
Replies
2
Views
1K
Replies
1
Views
759
Replies
4
Views
786
Replies
8
Views
1K
Replies
5
Views
2K
Replies
9
Views
5K
Replies
1
Views
2K

Physics Forums Values

We Value Quality
• Topics based on mainstream science
• Proper English grammar and spelling
We Value Civility
• Positive and compassionate attitudes
• Patience while debating
We Value Productivity
• Disciplined to remain on-topic
• Recognition of own weaknesses
• Solo and co-op problem solving

Hot Threads

Top