Dismiss Notice
Join Physics Forums Today!
The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

Riemann Integrable

  1. Jun 20, 2005 #1
    hello all

    well I was working through Riemanns Criterion :

    let f be a bounded function on the closed interval [a,b]. then f is riemann integrable on [a,b] if and only if , given any epsilon>0, there exist a partition P of [a,b] such that U(f,P)-L(f,P)<epsilon

    but there is one thing that im confused about, riemanns integrability only requires a function to be bounded on a closed interval, if that is the case a piecewise function or a function that is discontinuous at a point which are bounded on a closed interval should be riemann integrable would that be be correct? i just couldnt see how you would intergrate such functions

    steven
     
  2. jcsd
  3. Jun 20, 2005 #2

    shmoe

    User Avatar
    Science Advisor
    Homework Helper

    The bounded requirement guarantees that the upper and lower integrals exist. This isn't enough to declare it riemann integrable, you also need the upper and lower integrals to be equal (or your equivalent statement if you prefer).

    A function does not have to be continuous to be riemann integrable.
     
  4. Jun 20, 2005 #3
    I see so if a function is not continuous it can still be riemann integrable, the thing is that i dont get is that, I cant see how it is is possible to integrate something which is discontinuous or piecewise and bounded in both cases, do you have any examples of a function being riemann integrable and not continuous at the same time Im just finding it hard to imagine finding the area under the curve of such functions
     
  5. Jun 20, 2005 #4
    how about the function which =1 for x>=0 and =0 for x<0? that isn't continuous but it's riemann-integrable.
     
  6. Jun 20, 2005 #5
    hmmm.. well im still confused I just cant imagine how it is possible to find the area of a open shape, and also I cant see how it is possible to integrate
    [tex]\int_{-1}^{1}f(x)dx[/tex] if

    [tex]f(x)=\left\{\begin{array}{cc}0,&\mbox{ if }
    -1\le x\leq 0\\1, & \mbox{ if } 0<x\le 1\end{array}\right[/tex]
     
  7. Jun 20, 2005 #6

    Hurkyl

    User Avatar
    Staff Emeritus
    Science Advisor
    Gold Member

    Try splitting your partition into two parts -- the intervals on which f is continuous, and the intervals on which f is not continuous, and analyze their behavior separately as the norm of the partition goes to zero.
     
  8. Jun 21, 2005 #7
    hello all

    well I cant get out how you can find an interval where f is not continuous because it is only discontinuous at one point x=0

    now would this function be riemann integrable?
    [tex]f(x)=\left\{\begin{array}{cc}0,&\mbox{ if }x\in Q\\1, & \mbox{ if } x\notin Q[/tex]

    and what type of functions which are riemann integrable but discontinuous at the same time? I think that would help me understand what riemann integrability actually applies for.

    thank you
     
  9. Jun 21, 2005 #8

    matt grime

    User Avatar
    Science Advisor
    Homework Helper

    that function is definitely not riemann integrable. you should prove it; it is the first thing yuo should ever be asked to prove about non-integrable functions.


    Now the function that is 0 from -1 to 0 then 1 from 0 to 1
    Hurkyl's hint was quite sepcific, that fuction is discontinuous ate exactly one point, zero. the upper and lower riemann sums differ by exactly the width of the interval of the partition containing 0, so obviuosly as the max length of an interval tends to zero the upper and lower sums must converge (to 1)

    note a function is discontinuois on a set if it has a discontinuity at any point of that set, not if it is discontinuous at all points of the set. discontinuous is the negation of continuous after all.
     
    Last edited: Jun 21, 2005
  10. Jun 21, 2005 #9

    Hurkyl

    User Avatar
    Staff Emeritus
    Science Advisor
    Gold Member

    If f is discontinuous at x = 0, then f is not continuous on any open interval containing zero. :tongue2:


    If I remember correctly...

    A bounded function is Riemann integrable if and only if its set of discontinuities has zero area.
     
  11. Jun 21, 2005 #10
    i think that's how it goes. a function is riemann integrable if & only if it is continuous almost everywhere, meaning the set of discontinuities has measure zero.
     
  12. Jun 21, 2005 #11

    Hurkyl

    User Avatar
    Staff Emeritus
    Science Advisor
    Gold Member

    Zero measure sounds better than zero area!
     
  13. Jun 21, 2005 #12
    Wait a minute... isn't that the criterion for Lebesgue integrability? Riemann integrability requires a countable set of discontinuities (I think)...

    edit: replaced word "definition" with "criterion"
     
  14. Jun 21, 2005 #13

    Hurkyl

    User Avatar
    Staff Emeritus
    Science Advisor
    Gold Member

    Nah, you can Lesbegue integrate things that are everywhere discontinuous. Every bounded, measurable function is Lesbegue integrable over any set of finite measure. (And some unbounded functions!)

    For example, the Lesbegue integral of the salt-and-pepper function over [0, 1] is 1.
     
    Last edited: Jun 21, 2005
  15. Jun 21, 2005 #14
    edit: whoops never mind
     
    Last edited: Jun 21, 2005
  16. Jun 21, 2005 #15
    Not quite. A set can be continuous almost everywhere and still have an uncountable set of discontinuities.
     
  17. Jun 21, 2005 #16
    hello all

    thanxs guys, you have put things into more perspective now about riemann integrability in relation to discontinuities
     
  18. Jun 22, 2005 #17
    You're right about the Lebesgue integrability - my mistake.
     
    Last edited by a moderator: Jun 22, 2005
  19. Jun 22, 2005 #18
    Wouldn't that mean a function with measure zero of discontinuities could be not Riemann integrable?

    edit: That's what I originally meant to say, before bringing Lebesgue into the mess.
     
  20. Jun 22, 2005 #19
    No -- because the set of discontinuities doesn't have to be countable, it just has to have measure zero.

    I believe the exact condition is that a function on [a,b] is Riemann integrable if and only if the function is bounded and the set of discontinuities has measure zero.
     
  21. Jun 22, 2005 #20
    I see, you're right.
     
Know someone interested in this topic? Share this thread via Reddit, Google+, Twitter, or Facebook

Have something to add?



Similar Discussions: Riemann Integrable
  1. Riemann integrable (Replies: 13)

  2. Riemann Integrable (Replies: 8)

  3. Riemann Integration (Replies: 4)

Loading...